Lagrange方程应用于流体动力学  被引量:4

Application of Lagrange equation in fluid mechanics

在线阅读下载全文

作  者:梁立孚[1] 周平 

机构地区:[1]哈尔滨工程大学航天与建筑工程学院,黑龙江哈尔滨150001 [2]黑龙江科技大学机械工程学院,黑龙江哈尔滨150022

出  处:《哈尔滨工程大学学报》2018年第1期33-39,共7页Journal of Harbin Engineering University

基  金:国家自然科学基金项目(10272034)

摘  要:如何将Lagrange方程应用于流体动力学的问题是一个理论研究的难题。按照从变分学的基本理论研究做起的思想,本文应用变导的概念和运算法则,通过研究Lagrange方程中求导的性质,逐步地将Lagrange方程应用于理想流体动力学。按照从变分学的基本理论研究做起的思想,本文应用Lagrange-Hamilton体系,即非保守系统的Lagrange方程是非保守系统的Hamilton型拟变分原理的拟驻值条件,由不可压缩黏性流体动力学的Hamilton型拟变分原理推导出不可压缩黏性流体动力学的Lagrange方程,进而应用不可压缩黏性流体动力学的Lagrange方程推导出不可压缩黏性流体动力学的控制方程。探讨将Lagrange方程应用于可压缩黏性流体动力学问题中,推导出可压缩黏性流体动力学的控制方程。本文解决了如何将Lagrange方程应用于流体动力学的问题。The application of the Lagrange equation to fluid dynamics is difficult in theoretical research. In accordance with basic theory research on the calculus of variations, the concept of the variational derivative and algorithm are applied. The Lagrange equation is applied to ideal fluid dynamics gradually by studying the property of derivation from the Lagrange equation. The Lagrange-Hamihon system, which is the Lagrange equation of a non-conservative system, is a quasi-stationary condition of Hamilton-type quasi-variational principle of a non-conservative system. The Lagrange equations for incompressible viscous fluid dynamics are derived from the Hamihonian quasi-variational principle of the incompressible viscous fluid dynamics successfully. The governing equations of incompressible viscous fluid dynamics are deduced from the Lagrange equation of incompressible viscous fluid dynamics. Finally, application of the Lagrange equation to the questions of compressible viscous fluid dynamics is discussed. This paper comprehensively describes how to apply the Lagrange equation to fluid dynamics.

关 键 词:LAGRANGE方程 Lagrange-Hamilton体系 变导 理想流体动力学 黏性流体动力学 

分 类 号:O313[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象