检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:顾兴健 赵璐[2] 金明[2] 刘勇[2] 刘传才[3]
机构地区:[1]南京农业大学信息科技学院,南京210095 [2]中国船舶科学研究中心上海分部,上海200011 [3]南京理工大学计算机科学与工程学院,南京210094
出 处:《中国造船》2017年第4期100-107,共8页Shipbuilding of China
摘 要:提出了一种基于LSTM(Long-Short Term Memory)神经网络的海洋环境短期预报模型。鉴于传统的梯度优化网络参数通常倾向于收敛到较差的局部解。为避免训练网络陷入局部解的困境,论文首先采用自动编码器和解码器对网络权重参数进行初始化。其次,在网络的训练过程中,利用改进的粒子群算法优化网络权重参数。最后,以我国东海、南海和黄海典型试航海域的风、浪时间序列数据为研究对象进行试验。试验结果表明,该模型在短期范围预报取得了较好的预报精度。In this paper, a short-term prediction model of the marine environment based on LSTM (long-short term memory) neural network is proposed. However, training network parameters with traditional gradient optimization will often converge to a poor solution. In order to get better prediction results, we take two stages of optimization of network parameters. Firstly, auto-encoder (AE) is used to extract features automatically for the initial LSTM neural network model, and expression characteristics of AE are taken as initial parameters of LSTM neural network for unsupervised learning. Secondly, in order to improve the prediction accuracy in supervised learning phase, .the particle swarm algorithm (PSO) is used to optimize the parameters of the network. Data on wind speed and wave height in three sea areas (the East China Sea, the South China Sea and the Yellow Sea) are used to test the model, and test results show that the model has good prediction accuracy in short-range forecast.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117