面向服务推荐的QoS成列协同排序算法  被引量:3

QoS-aware listwise collaborative ranking algorithm for service recommendation

在线阅读下载全文

作  者:曹婧华[1,2] 孔繁森[1] 冉彦中[2] 

机构地区:[1]吉林大学机械与工程学院,长春130022 [2]吉林大学计算机公共教学与研究中心,长春130012

出  处:《吉林大学学报(工学版)》2018年第1期274-280,共7页Journal of Jilin University:Engineering and Technology Edition

基  金:国家自然科学基金项目(41274076)

摘  要:针对传统基于服务质量(QoS)预测的推荐方法较少考虑服务间的排序对产生推荐列表的影响,不能准确体现用户偏好的问题。本文提出了一种基于QoS排序学习的服务推荐算法,选用计算复杂度较低的成列损失函数来优化矩阵因式分解模型,并通过挖掘用户间的近邻信息来进一步提高QoS排序的准确性。在真实数据集上的大量实验表明,该算法具有良好的性能。With the increasing number of candidate services that meet the same function on the Internet, service selection becomes more and more difficult, and service recommendation becomes the key issue that needs to be solved urgently. However, the traditional service QoS prediction based recommendation method pays less attention to the role of the service ranking to the recommendation list, which can not accurately reflect the user preference. To solve the above problems, this paper proposes a QoS ranking learning based service recommendation algorithm. It selects low computational complexity listwise loss function to optimize the matrix factorization model, and further improves the accuracy of QoS ranking by mining the neighbor information between users. Experiments on real datasets show that the proposed algorithm has good performance.

关 键 词:计算机应用 服务推荐 协同过滤 排序学习 矩阵因式分解 

分 类 号:TP399[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象