检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ruo-yu ZHANG Hong-lin ZHAO Shao-bo JIA Ruo-yu ZHANG;Hong-lin ZHAO;Shao-bo JIA(Communication Research Center, Harbin Institute of Technology)
机构地区:Communication Research Center, Harbin Institute of Technology, Harbin 150080, China
出 处:《Frontiers of Information Technology & Electronic Engineering》2017年第12期2082-2100,共19页信息与电子工程前沿(英文版)
基 金:Project supported by the Fundamental Research Funds for the Cen- tral Universities (No. HIT.MKSTISP.2016 13) and the National Natural Science Foundation of China (No. 61671176)
摘 要:Acquisition of accurate channel state information (CSI) at transmitters results in a huge pilot overhead in massive multiple input multiple output (MIMO) systems due to the large number of antennas in the base station (BS). To reduce the overwhelming pilot overhead in such systems, a structured joint channel estimation scheme employing compressed sensing (CS) theory is proposed. Specifically, the channel sparsity in the angular domain due to the practical scattering environment is analyzed, where common sparsity and individual sparsity structures among geographically neighboring users exist in multi-user massive MIMO systems. Then, by equipping each user with multiple antennas, the pilot overhead can be alleviated in the framework of CS and the channel estimation quality can be improved. Moreover, a structured joint matching pursuit (SJMP) algorithm at the BS is proposed to jointly estimate the channel of users with reduced pilot overhead. Furthermore, the probability upper bound of common support recovery and the upper bound of channel estimation quality using the proposed SJMP algorithm are derived. Simulation results demonstrate that the proposed SJMP algorithm can achieve a higher system performance than those of existing algorithms in terms of pilot overhead and achievable rate.由于在基站处部署了大量天线,因而在大规模MIMO(multiple input multiple output)系统中发射机端获取信道状态信息需要大量的导频开销。为降低该系统所消耗的导频资源,本文基于压缩感知技术,提出了一种结构化联合信道估计的方法。首先分析了实际散射环境造成的角度域信道稀疏性,其中大规模MIMO系统中地理位置临近用户的信道矩阵存在共有稀疏结构和独立稀疏结构。同时,在压缩感知的框架下,用户配备多根天线能够进一步缓解导频开销的问题并能够提高信道估计的质量。在此基础上,本文提出了一种结构化联合信道估计算法,该算法能够以低导频开销联合估计多个用户的信道状态信息。此外,提供了该算法的共有支撑集恢复的概率上界和信道估计质量的上界。仿真结果表明该结构化联合信道估计算法能提供比现有算法更低的导频开销和更高的系统吞吐量。
关 键 词:Compressed sensing Multi-user massive multiple input multiple output (MIMO) Frequency-division duplexing Structured joint channel estimation Pilot overhead reduction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249