检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长安大学理学院数学与信息科学系,西安710064
出 处:《计算机科学》2018年第1期79-83,共5页Computer Science
基 金:国家自然科学基金项目(10901025;11501048)资助
摘 要:经典的概率粗糙集模型是基于等价关系和条件概率提出的。但在实际应用中,知识库存在多种不确定性因素,使得对象间的关系未必满足等价关系。因此在保证条件概率有意义的情况下,将等价关系推广到串行二元关系,讨论了串行关系下的概率粗糙集近似;研究了当目标概念发生变化时,串行概率粗糙下、上近似的性质;进一步,通过调整两个阈值,给出了对应的串行概率粗糙下、上近似的变化趋势。The classical probabilistic rough set model was proposed based on an equivalence relation and a conditional probability.However,uncertainty in knowledge base makes it difficult to satisfy the equivalence relation between any two objects.This paper considered the serial binary relation instead of an equivalence relation,making the conditional probability meaningful.Then the serial probabilistic rough set approximations were introduced based on a serial relation.Properties of the serial probabilistic rough lower and upper approximations were discussed when the target concepts are variable.Furthermore,by adjusting the two thresholds,the corresponding serial probabilistic rough lower and upper approximations were also investigated.
关 键 词:概率粗糙集 串行概率近似空间 串行概率粗糙集 单调性
分 类 号:TP182[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49