基于改进混合范数的图像重构算法  

Image reconstruction algorithm based on improved mixed norm

在线阅读下载全文

作  者:张鑫晟[1] 曹曦文 孙海威[1] 孔尧[1] 叶润武 宋雪桦[1] 

机构地区:[1]江苏大学计算机科学与通信工程学院,江苏镇江212000

出  处:《信息技术》2018年第2期133-136,共4页Information Technology

摘  要:压缩感知理论利用图像稀疏表示的先验知识,通过少量的测量值精确地恢复出原始图像信号。DTCWT凭借其更好表达图像边缘特征的特点,结合贪婪算法和凸优化算法的优点,在双树复数小波变换为稀疏基,局部哈达玛矩阵为观测矩阵的基础上提出改进的快速二步迭代混合范数算法。该算法的图像重构质量优于FIST算法以及IST算法,实验表明改进的混合范数的图像重构算法具有更好的图像重构质量和重构速度。The compressed sensing theory utilizes a priori knowledge of sparse images to accurately recover the original image signal with a small amount of measured values. DTCWT,by virtue of its ability to express the characteristics of image edge feature,combined with the advantages of greedy algorithm and convex optimization algorithm,the paper proposes an improved fast two-step method based on double tree complex wavelet transform as sparse base and local Hadamard matrix as observation matrix iterative mixed norm algorithm. The image reconstruction quality of this algorithm is better than FIST algorithm and IST algorithm. The experimental results show that the image reconstruction algorithm with improved mixed norm has better image reconstruction quality and reconstruction speed.

关 键 词:压缩感知 稀疏变换 混合范数 图像重构 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象