人脸表情识别在智能机器人中的应用研究  被引量:13

Research on Application of Facial Expression Recognition in Intelligent Robot

在线阅读下载全文

作  者:潘峥嵘[1] 贺秀伟 

机构地区:[1]兰州理工大学电气与信息工程学院,甘肃兰州730050

出  处:《计算机技术与发展》2018年第2期173-177,共5页Computer Technology and Development

基  金:甘肃省自然科学研究基金计划项目(1308RJZA273)

摘  要:随着智能机器人的快速发展,如何赋予机器人和谐的人机交互能力使其能够感知人类的情感成为当前人机交互研究的热点。针对AAM提取人脸表情特征时表征能力不足和实时性差的问题,提出一种基于BRISK和AAM组合方式提取表情的形状和纹理特征的方法。首先对初始的人脸图像采用Fast-SIC算法拟合出人脸的AAM模型,在获得人脸关键特征点之后用BRISK匹配特征点以增强匹配效率;其次用LGBP对人脸AAM模型的纹理特征进行提取以增强表情特征的表征能力;最后用SVM分类器对提取的表情特征进行分类。实验结果表明,BRISK与AAM组合的特征提取方法可以提高AAM模型的拟合速率,用LGBP提取的纹理特征更具有可分性。在CK+和LFPW人脸库上验证了该算法对面部关键特征点的检测精度和效率,而且与其他算法相比取得了较高的表情识别率,最后在NAO机器人平台上验证了算法的实用性。With the rapid development of intelligent robots,how to give robots harmonious human-computer interaction makes it able to perceive human emotion has been becoming the current hot topics in the study of human-computer interaction. According to the problem of insufficient representation of facial expression features and the poor performance of real-time feature extraction using traditional AAM model,we propose a novel method of extracting shape and texture features of facial expression based on the combination of BRISK and AAM. Firstly,the Fast-SIC algorithm is used to fit out the AAM of face for the original face image. In order to enhance the efficiency of feature matching,BRISK algorithm is used to match the acquired key facial feature points,and then LGBP is utilized to extract texture features of AAMin order to strengthen the representation of facial expression features. Finally,to classify the classes of facial expression features using theSVM classifier. The experiments show that the proposed method has improved the efficiency of fitting AAM,and texture features extractedby LGBP have more separability. The detection accuracy and efficiency of key facial feature points are validated respectively on the datasetsof CK+ and LFPW,and this method has achieved high facial expression recognition rate compared with other algorithms. Finally,its practicability is verified on the platform of NAO robot.

关 键 词:人脸表情识别 BRISK 主动表观模型 局部Gabor二进制模式 机器人 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象