基于LFOA优化多核支持向量机的液压泵故障诊断  被引量:24

Fault Diagnosis of Hydraulic Pump Based on LFOA Optimized Multi-kernel SVM

在线阅读下载全文

作  者:杜伟 房立清 齐子元 张前图 

机构地区:[1]军械工程学院火炮工程系 [2]驻356厂军代室

出  处:《机械设计与研究》2018年第1期137-140,144,共5页Machine Design And Research

基  金:河北省自然科学基金资助项目(E2016506003)

摘  要:针对采用传统支持向量机(SupportVectorMachine,SVM)进行故障诊断时核函数的构造和参数的选取存在盲目性的问题,提出一种基于改进果蝇优化算法优化多核SVM的液压泵故障诊断方法。首先,对液压泵振动信号进行局部特征尺度分解(LocalCharacteristic—scaleDecomposition,LCD),从多个角度提取混合特征组成特征集。然后,基于全局核函数和局部核函数构建多核支持向量机,并利用具有Levy飞行特征的果蝇优化算法(LFOA)对核函数权值和参数的选取进行优化。最后,将特征集输入多核SVM进行识别。液压泵故障诊断结果表明,与采用FOA、GA和PSO优化算法及单核SVM相比,所提方法具备全局寻优能力强和诊断准确率高的优点,可有效应用于液压泵故障诊断。Aiming at the blindness of the construction of kernel function and the selection of parameters in the fault diagnosis using traditional support vector machine (SVM) , a fault diagnosis method of hydraulic pump based on improved fruit fly optimization algorithm optimized multi-kernel SVM was proposed. Firstly, the local characteristic- scale decomposition (LCD) of the hydraulic pump vibration signal was performed to extract the mixed feature set from multi domains. Then, the multi-kernel support vector machine was constructed based on global kernel function and local kernel function, and the fruit fly optimization algorithm with Levy flight characteristic ( LFOA ) was used to optimize the selection of kernel weights and parameters. Finally, the feature set was input to the multi-kernel SVM for identification. The results of hydraulic pump fault diagnosis show that compared with FOA, GA and PSO optimization algorithms and single-kernel SVM, the proposed method has the advantages of strong global optimization ability and high diagnostic accuracy, and can be effectively applied to hydraulic pump fault diagnosis.

关 键 词:多核支持向量机 果蝇优化算法 局部特征尺度分解 液压泵 故障诊断 

分 类 号:TH165.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象