检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]军械工程学院火炮工程系 [2]驻356厂军代室
出 处:《机械设计与研究》2018年第1期137-140,144,共5页Machine Design And Research
基 金:河北省自然科学基金资助项目(E2016506003)
摘 要:针对采用传统支持向量机(SupportVectorMachine,SVM)进行故障诊断时核函数的构造和参数的选取存在盲目性的问题,提出一种基于改进果蝇优化算法优化多核SVM的液压泵故障诊断方法。首先,对液压泵振动信号进行局部特征尺度分解(LocalCharacteristic—scaleDecomposition,LCD),从多个角度提取混合特征组成特征集。然后,基于全局核函数和局部核函数构建多核支持向量机,并利用具有Levy飞行特征的果蝇优化算法(LFOA)对核函数权值和参数的选取进行优化。最后,将特征集输入多核SVM进行识别。液压泵故障诊断结果表明,与采用FOA、GA和PSO优化算法及单核SVM相比,所提方法具备全局寻优能力强和诊断准确率高的优点,可有效应用于液压泵故障诊断。Aiming at the blindness of the construction of kernel function and the selection of parameters in the fault diagnosis using traditional support vector machine (SVM) , a fault diagnosis method of hydraulic pump based on improved fruit fly optimization algorithm optimized multi-kernel SVM was proposed. Firstly, the local characteristic- scale decomposition (LCD) of the hydraulic pump vibration signal was performed to extract the mixed feature set from multi domains. Then, the multi-kernel support vector machine was constructed based on global kernel function and local kernel function, and the fruit fly optimization algorithm with Levy flight characteristic ( LFOA ) was used to optimize the selection of kernel weights and parameters. Finally, the feature set was input to the multi-kernel SVM for identification. The results of hydraulic pump fault diagnosis show that compared with FOA, GA and PSO optimization algorithms and single-kernel SVM, the proposed method has the advantages of strong global optimization ability and high diagnostic accuracy, and can be effectively applied to hydraulic pump fault diagnosis.
关 键 词:多核支持向量机 果蝇优化算法 局部特征尺度分解 液压泵 故障诊断
分 类 号:TH165.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28