检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]石河子大学农学院,新疆石河子832000 [2]石河子大学理学院,新疆石河子832000
出 处:《测绘通报》2018年第1期55-61,共7页Bulletin of Surveying and Mapping
基 金:国家自然科学基金(31660203)
摘 要:高光谱遥感影像的波段光谱特征是各类地物内在物理化学性质的反映,在对不同地物进行分类与识别时具有巨大潜能,但由于其波段多造成的信息冗余,需要对高光谱数据进行有效降维,以提高高光谱影像的分类准确度。本文提出了基于判别局部片排列的流形学习算法(DLA)对Hypersion高光谱数据进行降维,通过对局部样本数据进行流形学习框架内的优化训练,将原始光谱特征空间转换为低维的最优判别流形子空间,然后在该子空间内利用最大似然分类器对Hypersion影像中的每个像素进行分类,并与主成分分析(PCA)、原始光谱特征(spectral)降维方法的分类效果进行比较。结果表明,DLA能够有效提高高光谱数据的分类准确度,对不同树种分类取得了满意效果。Hyperspectral image has great potential in the classification and recognization of different objects, whose inherent physical and chemical properties can be reflected by the spectral features of the image bands. In order to overcome the high redundancy among the large number of bands of hyperspectral image, efficient dimensional reduction algorithms should be applied to improve the performance of image classification. In this paper, we present a modified manifold learning algorithm termed discriminative locality alignment (DLA) for the dimensional reduction of Hypersion image data. The proposed method transformed the original spectral feature space into the optimal low dimensional subspace by imposing discriminative information which from given raining samples in the manifold learning framework. In this subspace, the maximum likelihood classifier was then used to classify each pixel of the Hypersion image. Meanwhile, the classifyeation results based on the dimensional reduction algorithms of principle component analysis (PCA) and original spectral were compared with the performance of classification based on DLA. The experiments showed that DLA can effectively improve the classification accuracy of hyperspectral image data, and obtained satisfactory classification results for tree species.
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.109.137