检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北理工大学电气工程学院,河北唐山市063000
出 处:《矿业研究与开发》2018年第2期101-105,共5页Mining Research and Development
摘 要:针对磨矿过程中磨矿粒度难以在线实时检测的问题,提出了一种基于混沌粒子群(CPSO)改进果蝇算法(FOA)优化BP神经网络的方法,建立了磨矿粒度软测量模型。利用混沌搜索的遍历性和对初值的敏感性来提高FOA初始种群的多样性;为了减少适应度函数值更新过程中的盲目搜索,引入了粒子群算法(PSO)。然后利用改进后果蝇优化算法(MFOA)良好的全局寻优能力,自适应地调整BP神经网络的权值和阈值,提高了BP网络的收敛性能和测量精度。选取球磨机给矿量、给水量、磨机电流、分级机溢流浓度和螺旋分级机电流为辅助变量,构建MFOA-BP磨矿粒度软测量模型。研究表明,所构建的MFOA-BP模型鲁棒性强、测量精度较高。Aiming at the problem that it is difficult to achieve reabtime online detection of grinding size, a method that using fruit fly optimization algorithm (FOA) improved by chaotic and particle swarm optimization (CPSO) to optimize BP neural network was proposed. And a soft-sensing model of grinding size was established. The ergodicity of chaotic search and sensitivi- ty to initial values were used to improve the diversity of FOA initial population. In order to reduce the blind search in the process of updating fitness value, the particle swarm optimization (PSO) was introduced. Then, good global optimization abili- ty of MFOA was used to adjust the weight and threshold of BP neural network, which improved the convergence performance and measurement accuracy of BP network. At last, the feeding quantity of ore, feed water, mill current, overflow density and current of spire classifier were selceted as auxiliary variables to establish MFOA-BP soft-sensing model of grinding size. The re- search showed that the constructed MFOA-BP model had strong robustness and high accuracy of measurement.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70