最小二乘支持向量机结合红外光谱法测定润滑油酸值  被引量:3

Determination of Acid Value of Lubricating Oil by Infrared Spectrometry with Least Square Vector Machine

在线阅读下载全文

作  者:史令飞 瞿军[2] 邢志娜[2] 

机构地区:[1]海军航空工程学院研究生管理大队,烟台264001 [2]海军航空工程学院飞行器工程系,烟台264001

出  处:《理化检验(化学分册)》2018年第2期200-203,共4页Physical Testing and Chemical Analysis(Part B:Chemical Analysis)

摘  要:在润滑油酸值进行红外光谱法测定中,采用最小二乘支持向量机(LS-SVM)建立了酸值的定量预测模型。用Kennard-Stone方法将30个样本划分为训练集(24个样本)和验证集(6个样本),进行定量预测,并与偏最小二乘法和径向基函数神经网络所建模型的预测进行比较。结果表明:LS-SVM所建模型的预测标准偏差(SEP)最小,仅为0.002;预测值的相对误差为1.3%~5.3%。由此认为LS-SVM所建模型的训练和预测结果均优于其余两种方法所建模型。对5个未知样品的分析结果表明:LS-SVM模型的预测值与化学法实测值之间的相对误差(1.2%~3.1%)也较少。In the infrared spectrometric determination of acid value of lubricating oil, quantitative prediction model for the acid value was established by the least square vector machine (LS-SVM) method. By applying the Kennard-Stone method, 30 samples were divided into 2 groups, the training group (with 24 samples) and the testing group (with 6 samples), and quantitative prediction was performed. As compared with the models developed by methods of PLS and RBF-NH, the model of LS-SVM gave the smallest value of SEP (0. 002), and values of relative error of the predicted values were found in the range of 1.3 %--5.3 %. It was shown that the results of training and prediction obtained by the model of LS-SVM were better than those obtained by the other 2 models. In the analysis of 5 unknown samples, small relative errors (ranged from 1.2% to 3.1%) were obtained by the model of LS-SVM between the predicted values and the true values.

关 键 词:最小二乘支持向量机 红外光谱 润滑油 酸值 

分 类 号:O657.33[理学—分析化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象