多先验特征与综合对比度的图像显著性检测  被引量:8

Saliency detection based on multiple priorities and comprehensive contrast

在线阅读下载全文

作  者:袁巧 程艳芬[1] 陈先桥[1] 

机构地区:[1]武汉理工大学计算机科学与技术学院,武汉430063

出  处:《中国图象图形学报》2018年第2期239-248,共10页Journal of Image and Graphics

基  金:国家自然科学基金项目(51179146)~~

摘  要:目的图像的显著性检测在计算机视觉中应用非常广泛,现有的方法通常在复杂背景区域下表现不佳,由于显著性检测的低层特征并不可靠,同时单一的特征也很难得到高质量的显著图。提出了一种通过增加特征的多样性来实现显著性检测的方法。方法在高层先验知识的基础上,对背景先验特征和中心先验特征重新进行了定义,并考虑人眼视觉一般会对暖色调更为关注,从而加入颜色先验。另外在图像低层特征上使用目前较为流行的全局对比度和局部对比度特征,在特征融合时针对不同情况分别采取线性和非线性的一种新的融合策略,得到高质量的显著图。结果在MSRA-1000和DUT-OMRON两个公开数据库进行对比验证,实验结果表明,基于多先验特征与综合对比度的图像显著性检测算法具有较高的查准率、召回率和F-measure值,相较于RBD算法均提高了1.5%以上,综合性能均优于目前的10种主流算法。结论相较于基于低层特征和单一先验特征的算法,本文算法充分利用了图像信息,能在突出全局对比度的同时也保留较多的局部信息,达到均匀突出显著性区域的效果,有效地抑制复杂的背景区域,得到更加符合视觉感知的显著图。Objective Saliency detection is widely used in computer vision. When dealing with simple images, the bottom-up low-level features can achieve good detection results. As for images with complex background, the existing methods do not perform well and many regions of background could also be detected, and since the low-level features of saliency detection are not so reliable. At the same time, a single feature is also difficult to get high-quality saliency map. Hence, more salient factors are need to be integrated to solve it. This paper proposes a method to achieve saliency detection by increasing the diversity of features. Method A new consistency method base on the standard structure of the cognitive vision model. On the basis of high-level prior knowledge, the background prior characteristics and the center prior characteristics are redefined. By combining the theory of boundary prior and merging the spatial and color information get background prior saliency map. Then, according to the mechanism of human visual attention, taking the center of the background prior map as the central position of the salient region, and then apply the center prior, get the center prior saliency map. And consider the human eye vision to pay more attention to the warm color, while the warm tone has an effect on the image saliency, thus adding color prior. The local contrast method is better for the detailed texture of the image, but the integrity is not enough, the saliency map is generally dark. The contrast between the salient region and the background region is not enough, and it does not highlight the overall sense of the saliency objects. Global contrast can better show a large saliency target, but the details of the edge of the image is not good enough, at the same time there are still many unrelated interference pixels in the background region. Therefore, the more popular global contrast and local contrast characteristics are used in the low-level feature of the image, considering the overall degree of difference and the edg

关 键 词:复杂背景区域 低层特征 高层先验 背景先验 中心先验 人眼视觉 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象