检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川师范大学,四川成都610101 [2]盲信号处理重点实验室,四川成都610041
出 处:《现代电子技术》2018年第6期145-149,共5页Modern Electronics Technique
基 金:国家自然科学基金资助项目(61403301);国家自然科学基金(61773310)~~
摘 要:大学生在课程规划方面有很高的自由度,这使得成绩数据较不规整,研究者很难对学生的前序课程成绩进行有效分析、利用。已有的成绩预测方法普遍未考虑学生前序课程成绩残缺的现象,从而导致预测准确性不佳。提出一种基于K近邻局部最优重建的残缺数据插补方法,该方法能够有效抑制前序课程成绩缺失对预测模型精度的影响。实验表明,该方法的补全效果优于已有的均值插补、GMM插补等方法,结合随机森林模型实现了有效的成绩预测,为学生成绩管理、就业能力预警提供了客观的参考。College students have high freedom on their course planning,which makes the score data irregular and in disorder,and makes it difficult for researchers to effectively analyze and utilize students′ scores of foreword curriculums. The score missing phenomenon of students′ foreword curriculums is generally not considered in the existing score prediction methods,resulting in relatively low prediction accuracy. Therefore,a missing data imputation method based on local optimal reconstruction of k-nearest neighbors is proposed,which could effectively suppress the influence of foreword curriculum score missing on the accuracy of prediction model. The experimental results show that the completion effect of the proposed method outperforms that of the existing mean imputation method,GMM imputation method,and other methods. Effective score prediction is realized by combining with random forest model to provide an objective reference for students′ score management and early warning on students′ employability.
关 键 词:成绩预测 缺失数据 数据插补 数据挖掘 机器学习 随机森林模型
分 类 号:TN911-34[电子电信—通信与信息系统] TP391[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117