检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学机械工程学院,南京210094 [2]南京电讯技术研究所,南京210007
出 处:《电子与信息学报》2018年第3期734-742,共9页Journal of Electronics & Information Technology
基 金:国家自然科学基金(61471395;61471392;61301161);江苏省自然科学基金(BK20141070)~~
摘 要:针对频谱感知错误累积造成频谱预测性能恶化问题,该文提出一种基于最小贝叶斯风险的稳健频谱预测策略。分布拟合检验表明频谱预测输出服从正态分布,定义频谱预测输出的贝叶斯风险函数,证明使贝叶斯风险函数最小的频谱预测输出判决门限将使频谱预测的均方误差最小,求得了使贝叶斯风险最小的最优判决门限,构建稳健频谱预测策略。仿真结果表明,与固定判决门限的神经网络频谱预测相比,稳健频谱预测策略改进了频谱感知错误下的频谱预测性能,改善了非授权用户的动态频谱接入性能。The accumulation of miss detection and false alarm in spectrum sensing leads to the persistently decreasing of prediction accuracy in spectrum prediction. This paper takes neural network based spectrum prediction for example, and presents a minimum Bayesian Risk based spectrum prediction to solve this problem. The distribution fitting shows that the prediction output follows the normal distribution. The expectation of prediction mean square error is defined as the Bayesian Risk, and the optimal detection threshold of the prediction output is derived through minimizing the Bayesian Risk. Through this method, the prediction accuracy is insensitive to the spectrum sensing errors. Compared with the traditional spectrum prediction with fixed detection thresholds, simulation results demonstrate the robust spectrum prediction keeps the prediction accuracy stable, and improve the performance in dynamic spectrum access.
关 键 词:动态频谱接入 稳健频谱预测 神经网络 贝叶斯风险 预测准确率
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15