基于局部最优分析的纺织品瑕疵检测方法  被引量:9

Fabric Defect Detection Based on Local Optimum Analysis

在线阅读下载全文

作  者:刘威[1] 常兴治[2] 梁久祯[1] 贾靓[1] 顾程熙 

机构地区:[1]常州大学信息科学与工程学院,常州213164 [2]常州信息职业技术学院智能制造工业云开放实验室,常州213164

出  处:《模式识别与人工智能》2018年第2期182-189,共8页Pattern Recognition and Artificial Intelligence

基  金:国家自然科学基金项目(No.61170121);常州市高技术研究重点实验室(No.CM20153001)资助~~

摘  要:针对复杂的含有周期变化图案的纺织品瑕疵检测,提出改进Markov随机场模型的无监督纺织品瑕疵检测方法.应用随机场实现周期性纺织品图像的瑕疵检测,利用Markov邻域特性,综合判断瑕疵区域.结合周期图像分割,确定Markov随机场最小图像块计算单元,降低算法的计算复杂度.在随机场势函数定义中,综合考虑相邻图像块的差异特性,结合Markov随机场的全局性判断瑕疵点的位置.引入模糊相似关系矩阵概念,求解改进后的模型参数,使所有图像块的局部能量达到最优.实验表明,文中方法对样本的查全率较高.Aiming at the detection of textile defects with complex periodic patterns, an unsupervised fabric defect detection method based on modified Markov random field model is proposed. The defects of periodic textile images are detected and the areas of defect are judged via the Markov neighborhood feature. The minimum image block computing unit of Markov random field is determined by combining the segmentation of periodic image, and the computational complexity of the algorithm is reduced. In the definition of the random field potential function, the difference of adjacent image blocks is comprehensively taken into account. The location of defect area is judged by the global characteristics of the Markov random field. The concept of fuzzy similarity relation matrix is introduced to solve the parameters of the improved Markov random field model, and the local energy of all image blocks is optimized. Experiments show that the proposed defect detection method gains high recall.

关 键 词:MARKOV随机场 局部最优 相似关系 无监督瑕疵检测 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象