检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国网吉林省电力有限公司电力科学研究院,吉林长春130021 [2]国网新源控股有限公司,北京100761
出 处:《水力发电》2018年第3期62-65,共4页Water Power
摘 要:针对水电站运行人员巡检时间过长,检查设备故障效率过低等问题,设计了水电站故障检测方案。根据改进的Adaboost方法对不同工况下机器作用所产生的噪声值进行训练,并建立一个分类器模型,将其应用到水电站设备故障检测方案当中。通过仿真实验,结果表明改进的Adaboost分类器正确率很高,达到89.1%。此方案可以提高水电站设备故障的检测效率,加强了工作人员的安全保障。In view of longer operation personnel inspection time and lower equipment tault check efficiency in hydropower station, a fault detection scheme is designed, in which, the noises generated by the operation of machines in different operation conditions are trained according to improved Adaboost method and a classifier model is set up. The model is applied to equipment fault detection scheme of hydropower station. The simulation experiment results show that the improved Adaboost classifier has a high correct rate of 89.1% . The scheme can improve the detection efficiency of equipment fault of hydropower station and improve the security of staffs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3