煤矿巷道光面爆破智能设计系统开发与应用  被引量:9

Development and application of intelligent design system for smooth blasting of coal mine roadway

在线阅读下载全文

作  者:凌天龙[1] 武宇[1] 李胜林[1] 梁书锋[1] 柴鹏伟 

机构地区:[1]中国矿业大学(北京)力学与建筑工程学院,北京100083

出  处:《河南理工大学学报(自然科学版)》2018年第2期29-35,共7页Journal of Henan Polytechnic University(Natural Science)

基  金:国家自然科学基金资助项目(10272109)

摘  要:为了得到煤矿巷道光面爆破参数,使用BP神经网络技术对参数进行预测和优选,并用C#语言开发了巷道光面爆破智能设计系统。通过分析影响巷道光面爆破效果的主要因素,将普氏系数、节理裂隙发育情况、炮孔直径、掘进面积等8个因素设置为输入层参数。以光面爆破理论研究和煤矿一线生产调研为基础,建立BP网络神经,进行网络学习,训练样本,并应用该系统对不同矿区的实际巷道进行爆破方案设计。结果表明,预测的参数与实际爆破参数较为一致,在现场试验中也取得较好效果,说明该系统可以提高煤矿巷道光面爆破参数设计的可靠性,对煤矿巷道光面爆破参数设计具有一定的参考价值。BPneural network is used to forecast and optimize the blasting parameters of coal mine rthe intelligent design system for smootli blasting was developed by C# language. By analyzing thfactors on smooth blasting, 8 parameters, such as Protodrakonov scale of hardness, developmental conditions of joint and fracture, diameter of tile blast hole and area of tile driving section, etc. were chosen as the input layerparameters. Some learning and training samples were established based on expert research results and practical experiences. The system was applied to design blasting scheme of actual roadway in different mining areas. The results show that tlie predicted parameters are in good agreement witli the actual blasting parameters and also achieve good results in the field test, which means that the system has a certain application value reliability on parameters designing with smooth blasting for coal mine roadway.

关 键 词:煤矿巷道 光面爆破 人工神经网络 智能设计 

分 类 号:TD235.47[矿业工程—矿井建设]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象