检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学计算机学院,陕西西安710129 [2]大数据存储与管理工业和信息化部重点实验室(西北工业大学),陕西西安710129
出 处:《软件学报》2018年第2期383-395,共13页Journal of Software
基 金:国家重点研发计划(2016YFB1000703);国家自然科学基金(61332006;61732014;61672432;61472321;61502390)~~
摘 要:概率知识库中的推理技术是近年来的研究热点.目前,大多数系统的推理主要基于批处理的方式实现,并不适用于在线查询场景.对此,提出了一种基于近似因子的在线概率知识库推理方法.它可以重复利用已推断结果计算查询变量的边缘概率.该算法首先提取查询变量的子图(含已推断变量);然后,在此子图上添加近似因子,以模拟子图外其余变量的影响;最后,采用团树算法推断查询变量的边缘概率.实验结果表明:相对于已有算法,该算法可在时间和精度上取得较好的权衡.The inference techniques for probabilistic knowledge bases have recently attracted significant attentions. In most off-the-shelf existing systems, the inference is mainly implemented based on batch processing and thus not suited for online querying. This paper proposes an online inference approach based on approximate factors for probabilistic knowledge bases, so as to provide a way to reuse those inferred results to calculate the marginal probability for the query variable. In this approach, a subgraph is extracted first, taking the query variable as center; then some approximate factors are attached to simulate the influences from the variables outside the subgraph; and finally, the marginal probability of the query variable is calculated by the clique tree algorithm. Experiments show that compared with existing algorithms, the presented approach can achieve a better tradeoff between accuracy and time.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.191.196