检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:占文枢 伦增珉 陈洪刚[2] 周霞 陈敬勖 滕奇志[2]
机构地区:[1]页岩油气富集机理与有效开发国家重点实验室,北京100083 [2]四川大学电子信息学院图像信息研究所,成都610065
出 处:《科学技术与工程》2018年第3期85-91,共7页Science Technology and Engineering
基 金:页岩油气富集机理与有效开发国家重点实验室开放基金(G5800-16-ZS-KFZY008)资助
摘 要:实际采集的页岩图像存在分辨率低等不足,有时难以满足实际应用的需求。针对此问题,构建了一种基于双层深度卷积神经网络的页岩图像超分辨率重建算法。算法以深度卷积神经网络为基础,引入残差训练及批规范化层来加速网络的收敛,并且在此神经网络的基础上提出图像像素域及梯度域结合的页岩图像超分辨率重建算法。算法大致过程为首先利用像素域的卷积神经网络对输入的低分辨率页岩图像进行上采样;然后对上采样图像提取梯度信息并利用梯度域的卷积神经网络对其进行转换;最后利用转换后的梯度信息作为正则项来约束高分辨率图像的重建,从而得到重建的高分辨率页岩图像。实验表明,与主流的超分辨率重建算法相比,重建得到的页岩图像具有更好的主观视觉效果与更高的客观评价参数,更利于后续的处理及分析。There are some problems in the actual shale image,such as low resolution,sometimes it is difficult to meet the needs of practical applications. To tackle with this problem,a super-resolution algorithm for shale image is proposed,which is based on double deep convolutional neural networks. The algorithm is based on depth convolution neural networks and introduce residual training with batch normalization to accelerate the convergence of convolutional neural networks. On this basis,the pixel-gradient domain's algorithm is proposed for the reconstruction of shale image. In this algorithm,firstly,the input image is up-sampled by the pixel domain convolution neural network. Secondly,the gradient profile information is extracted from the up-sampled image and converted by the gradient domain convolution neural network. Finally,the converted gradient information is used as a constraint to reconstruct the high-resolution image. Moreover,the Batch-Normalization and deep residual-learning are introduced to improve the training speed of the neural network. The experimental results show that compared with the some leading super-resolution algorithm,the reconstructed image has a significant improvement in subjective vision and objective evaluation,and then it is helpful for the further processing and analysis of shale image.
关 键 词:页岩图像 超分辨率重建 深度卷积神经网络 梯度转换 批规范化操作
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.82.202