检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚琨 YAO Kun(Department of Applied Physics, School of Science, University of Naval Engineering, Wuhan 43003)
机构地区:[1]海军工程大学理学院应用物理系,武汉430033
出 处:《核聚变与等离子体物理》2018年第1期29-33,共5页Nuclear Fusion and Plasma Physics
摘 要:为了在数值计算中保持哈密顿系统的辛几何结构不变,利用辛几何算法得到了在线性哈密顿系统中射线追踪方程的一般辛差分格式。通过具体算例,利用辛几何算法计算了波在非磁化等离子体中的传播轨迹,并且与传统Runge-Kutta-Fehlberg算法所得结果进行了比较。利用辛几何算法所得传播轨迹与解析解一致,其色散函数值的误差随时间线性增长,能在长时间内保持色散函数值在一个很小的误差范围内。利用传统的Runge-Kutta-Fehlberg算法所得传播轨迹与解析解不一致,其误差随时间做大幅振荡增加。计算结果表明辛几何算法在保持传播轨迹和色散函数值方面具有独特的优势。In order to preserve the syrnplectic geometric structure of Hamiltonian system, symplectic geometric algorithm is used to solve ray tracing equations. Symplectic geometric algorithm assures that conversion between two steps is symplectic. Symplectic geometric algorithm and Runge-Kutta-Fehlberg method are used to solve ray tracing equations respectively. The accuracy of both methods is fourth order. The results calculated by a simplistic geometric algorithm are in accordance with the analytic solution. In symplectic geometric algorithm, the error of dispersion function value increases with time linearly. The dispersion function value is within high accuracy. The results calculated by Runge-Kutta-Fehlberg method are different with the analytical solution. The calculation results show that the symplectic geometric algorithm has irreplaceable advantages in maintaining propagation trajectory and dispersion function value. Next symplectic geometric algorithm will be applied in magnetized plasma and nonlinear Hamiltonian systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.9.230