基于分层聚类算法的地区风电出力典型场景选取方法  被引量:20

A regional wind power typical scenarios' selection method based on hierarchical clustering algorithm

在线阅读下载全文

作  者:林俐[1] 费宏运 刘汝琛 潘险险 LIN Li1, FEI Hongyun1, LIU Ruchen2, PAN Xianxian3(1. State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; 2. Shanxi Electric Power Engineering Co., Ltd, China Energy Engineering Group, Taiyuan 030000, China; 3. Guangdong Power Grid Development Research Institute, Guangzhou 510080, Chin)

机构地区:[1]华北电力大学新能源电力系统国家重点实验室,北京102206 [2]中国能源建设集团山西省电力勘测设计院有限公司,山西太原030000 [3]广东电网发展研究院有限责任公司,广东广州510080

出  处:《电力系统保护与控制》2018年第7期1-6,共6页Power System Protection and Control

基  金:国家自然科学基金重大项目资助(51190103)~~

摘  要:为反映风电场出力变化特征,提出了一种基于分层聚类算法的地区风电出力典型场景选取方法。首先采用分层聚类算法对风电出力样本进行聚类分析,得到反映样本亲疏关系的聚类树状图。随后考虑风电出力典型场景的选取质量,采用类间样本离差平方和来描述类间样本的差异性,以此作为聚类数的判定依据,从而实现样本的有效划分。最后,以某地区实际风电出力数据为例,验证了所提方法的合理性,并面向调峰、无功配置等需求选取了风电出力典型日场景。In order to reflect the features of wind farm power variation, this paper puts forward a method for regional wind power typical scenarios' selection based on hierarchical clustering algorithm. Firstly, it uses the hierarchical clustering algorithm to cluster the wind power output samples and gains a clustering tree to reflect the similarity relation between samples. Then, in order to improve the quality of wind power typical scenarios' selection, the sum of squares of deviations is used to describe the difference between interclass samples, which is regarded as a basis to determine the number of clusters, and it realizes the samples' effective division. Finally, by using the real wind power output data in a certain region, it verifies the method's rationality, and selects regional wind power typical scenarios meeting the requirements of peak regulation and reactive power configuration, This work is supported by National Natural Science Foundation of China (No. 51190103).

关 键 词:分层聚类算法 典型场景 聚类树状图 风电出力样本 聚类数 

分 类 号:TM614[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象