检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪海兵 董天宝 竺小松 WANG Hai-bing, DONG Tian-bao,ZHU Xiao-song(Electronic Countermeasure Institute, National University of Defense Technology, Hefei 230037, Chin)
出 处:《电子信息对抗技术》2018年第2期1-6,16,共7页Electronic Information Warfare Technology
基 金:安徽省自然科学基金(1408085MF129)
摘 要:观测值受脉冲噪声干扰情况下,传统的压缩感知算法基本失效,基于洛伦兹范数的硬阈值迭代(LIHT)算法是有效途径,但是硬阈值迭代过程会误判信号支撑集,随着脉冲数目增加,算法性能明显下降。针对这一问题,提出了一种基于洛伦兹范数的软阈值迭代(LIST)压缩感知重构算法。利用洛伦兹范数有效约束脉冲噪声,引入信号稀疏度度量函数,采用梯度下降法降低重构信号的稀疏度,实现软阈值迭代,并通过拟牛顿法求解该模型,加快算法收敛,运算量与其他算法是同一数量级,数值仿真表明,重构信噪比优于LIHT算法。In the presence of observation impulsive noise, the traditional compressed sensing re- construction algorithms usually fail, the Lorentzian-based iterative hard threshold (LIHT) algo- rithm is an effective way. However, the iterative hard threshold procedure misjudges the signal support set, and as the impulse number increases, the performance of the LIHT algorithm de- clines significantly. To handle this problem, a Lorentzian-based iterative soft threshold (LIST) compressed sensing reconstruction algorithm is proposed. The Lorentzian norm is employed to suppress the impulse noise effectively. The signal' s sparsity estimating function is introduced to reduce the reconstructed signal's sparsity via gradient descent procedure which is called the it- erative soft threshold (IST). To speed up the convergence, the quasi-Newton method is ap- plied. The computation complexity is the same order of other algorithms. Numerical simulations show that the LIST algorithm outperforms the LIHT algorithm.
关 键 词:压缩感知 脉冲噪声 软阈值迭代 洛伦兹范数 拟牛顿方法
分 类 号:TN971.1[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7