检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢琳 张磊[2] 李健[2] XIE Lin1,2, ZHANG Lei2, LI Jian2 1(University of Chinese Academy of Sciences, Beijing 100049, China) 2(Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China)
机构地区:[1]中国科学院大学,北京100049 [2]中国科学院计算机网络信息中心,北京100190
出 处:《计算机系统应用》2018年第4期63-69,共7页Computer Systems & Applications
摘 要:近年来,随着视频监控系统在自然保护区的大量部署,如何有效利用日益增加的海量视频监控数据成为亟待解决的难题.通过基于图像相似度的关键帧提取算法对海量视频数据进行清洗和压缩,同时利用基于深度学习的目标检测算法提取关键帧中的有效视频信息,并提供多种基于内容的视频检索方式,自动对用户提交的检索内容进行分析与处理,从而快速检索出感兴趣的视频.通过对青海湖野生动物视频监控数据进行分析与检索,验证了该系统的有效性.In recent years, a large number of video surveillance systems are deployed in the nature reserves, so it has become an urgent problem how to effectively use the increasing mass of video surveillance data. In this study, an efficient algorithm for key frame extraction based on image similarity is used to clean and compress the massive video data. At the same time, an object detection algorithm based on deep learning is used to extract valid video information. In addition, the system provides a variety of content-based video retrieval methods. It automatically analyzes and processes the search contents submitted by the user so as to quickly retrieve the video of interest. This study analyzes and retrieves the video surveillance data of wild animals in Qinghai Lake, which verifies the correctness of the proposed system.
关 键 词:视频分析 视频检索 关键帧提取 深度学习 目标检测
分 类 号:TN948.6[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15