检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王涛[1] 王维平[1] 李小波 井田 Wang Tao;Wang Weiping;Li Xiaobo;Jing Tian(School of System Engineering, National University of Defense Technology, Changsha 410073, China)
机构地区:[1]国防科技大学系统工程学院,湖南长沙410073
出 处:《系统仿真学报》2018年第4期1221-1228,共8页Journal of System Simulation
基 金:国家自然科学基金(61273198)
摘 要:持续侦察作为多无人机集群的一种典型应用模式,持续侦察过程中无人机集群的动态部署,尤其是时敏环境下的自适应调整一直是该领域研究的难点问题,本文聚焦于此,提出了一种多无人机集群持续侦察的分层控制框架及其关键算法。该框架将时敏目标特征和集群侦察效果用一种可演化、可交互的数字草皮人工势场表征;将各栅格的数字草皮势函数作为数据点权重,设计了一种基于栅格的加权动态数据聚类方法,自适应调整无人机子群辖区和子群无人机数量。案例研究表明,该方法能够有效提升多无人机集群的侦察效率和工作载荷均衡度。Persistent surveillance is a typical application of multi-swarm aerial vehicle systems (UAVs). And dynamic deployment for multi-swarm UAVs in persistent surveillance has been proved to be a complex problem, especially when the self-adjustment is required to adapt the time-sensitive environment. This paper proposes a multi-swarm hierarchical control scheme and key algorithms. We design the digital turf potential field model to approximate the evolving and interactive information of time-sensitive target features and surveillance effects. Moreover, using the digital turf potential function of each grid as the data point weight, we design a grid-based weighted data-clustering algorithm for the dynamic assignment of UA V swarms, which can adaptively adjust the number of UA Vs in each swarm and its sub-region. Finally, we evaluate the proposed architecture by means of case studies and find that our method can promote surveillance efficiency and workload balance of multiple UAV swarms.
关 键 词:多无人机集群 持续侦察 动态部署 数字草皮模型 数据聚类
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38