检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李大伟 李明涛 郑建华 杨成伟[3] LI Da-wei;LI Ming-tao;ZHENG Jian-hua;YANG Cheng-wei(National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;University of Chinese Academy of Sciences, Beijing 100190, China;Beijing Institute of Technology, Beijing 100081, China)
机构地区:[1]中国科学院国家空间科学中心,北京100190 [2]中国科学院大学,北京100190 [3]北京理工大学,北京100081
出 处:《电子设计工程》2018年第8期144-149,共6页Electronic Design Engineering
基 金:国防基础科研计划项目(B2220132013)
摘 要:本文针对小目标检测难题及其实时性提出一种固定翼无人机对远距离车辆目标的自动检测方法。通过对图像进行场景感知和语义分析,在感兴趣区域重点搜索目标,同时提出一种融合梯度响应的显著性检测手段。为有效排除周边背景环境和物体的干扰,提出一种结合无人机位姿信息的目标尺寸预估算法,并采用数学形态学进行疑似目标的筛选和剔除。通过公开数据库及无人机航拍试验,结果表明本方法在复杂背景环境下对地面静止或运动车辆目标的自动检测精度可达63.6%,公路场景下检测精度达80.43%。In order to solve the issue of small target detection and its efficiency, this paper proposes anapproach on automatic vehicle detection for fixed-wing unmanned aerial vehicles (UAV). Regionsegmentation and recognition provide context information to search small targets in specific area. Asaliency detection method combined with gradient response is also proposed. In order to get rid of otherobjects during vehicle detection, a method which combines both mathematical morphology and UAVattitude information has been proposed. The framework has been tested on a public dataset and aerialimages from our fixed-wing UAV. Extensive experiments demonstrate that the proposed detectionframework can detect both still and moving vehicle with 63.6% average precision (AP), and vehicles onroad can be detected with 80.43% AP.
关 键 词:无人机 自动检测 显著性检测 位姿信息 数学形态学
分 类 号:TN29[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145