检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:仝劝 冯侨华[1] 盛显超 武士涛 施云波[1] TONG Quan;FENG Qiaohua;SHENG Xianchao;WU Shitao;SHI Yunbo(The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentation of Heilongjiang Province, College of Measure-control Techndogy and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China)
机构地区:[1]哈尔滨理工大学测控技术与通信工程学院测控技术与仪器黑龙江省高校重点实验室,哈尔滨150080
出 处:《黑龙江大学自然科学学报》2018年第1期107-115,共9页Journal of Natural Science of Heilongjiang University
基 金:国家自然科学青年基金资助项目(61501149);黑龙江省自然科学基金重点项目(ZD201217)
摘 要:封闭鸡舍环境中存在多种有毒气体,常用的半导体气体传感器选择性差、受气体交叉干扰的影响大,导致测量误差大,不能满足检测需求。针对这个问题,采用经典数据融合方式中的最小二乘法和现代数据融合方式中的BP神经网络的4种训练函数,分别对多气体传感器输出信号进行仿真训练分析,并利用均方误差和迭代次数来评价仿真的性能。仿真和实验结果表明,有弹回的BP算法训练的网络性能最优,可有效地降低测量误差,平均相对误差和最大相对误差均在1%以内,满足封闭鸡舍环境检测需求。There are a variety of toxic gases in the closed henhouse environment,but the poor selectivity of commonly used semiconductor gas sensor and the great effect of the cross coupling cause too large measurement error to meet the demand of measurement. Aiming at these deficiencies,the least squares method in the classical data fusion method and the 4 training functions of the BP neural network in the modern data fusion method to simulate and analyze the output signal of themulti-gas sensors are used to improve the measurement accuracy. The training square error and network iteration are adopted to evaluate the performance of the model. Simulation results show that the network performance trained by the rebound BP algorithm is optimal to reduce the measurement error effectively. The average relative error and the maximum relative error are limited within 1%to meet the requirements of environmental testing.
关 键 词:多气体传感器 交叉干扰 数据融合 最小二乘法 BP神经网络
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3