山区小城市机非混行道路行程时间修正模型研究  被引量:2

Study on Modification Model of Mixed Traffic Travel Time in Small Mountainous Cities

在线阅读下载全文

作  者:张翀[1] 陈金山[1] 郭建钢[1] 李林[1] 罗文婷 Zhang Chong;Chen Jinshan;Guo Jiangang;Li Lin;Luo Wenting(Traffic Engineering Research Institute, Fujian Agriculture and Forestry University,Fuzhou 350002,Chin)

机构地区:[1]福建农林大学交通工程研究所,福建福州350002

出  处:《华东交通大学学报》2018年第2期66-72,共7页Journal of East China Jiaotong University

基  金:国家自然科学基金(51608123);福建省自然科学基金(2017J01682)

摘  要:为准确估计山区小城市路段行程时间,以山区小城市道路为研究对象,在分析其交通特性和传统BPR模型的基础上,通过定义路段累计流量,构造了基于路段累计流量的机非混行道路行程时间修正模型。采用人工记录法获取非拥堵状态下的实测数据,并通过VISSIM仿真得到拥堵状态下的实验数据,根据大量数据标定修正BPR模型的主要参数,并对两种模型进行误差分析。结果表明:山区小城市干路行程时间估计中,修正BPR模型的误差均值为4.597%,传统BPR模型的误差均值为35.021%;支路行程时间估计中,修正BPR模型的误差均值为3.120%,传统BPR模型的误差均值为46.737%。修正BPR模型的估计效果明显优于传统BPR模型,且非机动车干扰对支路路段行程时间的影响更为显著。To accurately estimate road section travel time in small mountainous cities, the travel time modification model was proposed based on traffic property analysis, traditional BPR model analysis, as well as the accumulative traffic flow analysis of mixed traffic road sections. In this paper, the manual recording method was adopted to collect field data under non-congestion state, and VISSIM software was simulated to acquire experimental data under congestion state. Then, the traditional BPR model was modified based on a large amount of traffic flow data, and an error comparison between the traditional and modified BPR models was made. The research results show that the traditional and modified BPR models respectively produce the average errors of35.021% and 4.597% in travel time for arterial roads, and of 46.737% and 3.120% in travel time for access roads. It can be concluded that the estimation performance of the modified BPR model is better than that of the traditional BPR model, and the effects of non-motor vehicle interference on access road travel time is more significant.

关 键 词:山区小城市 行程时间 累计流量 机非混行 BPR模型 

分 类 号:U491.1[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象