基于ARX模型与自适应神经元PID的片烟加料复合控制系统  被引量:2

Compound control system for strip casing based on ARX model and self-adaptive neuron PID

在线阅读下载全文

作  者:郑松锦 李再 段海涛 朱萌 赵伟[3] 刘玉斌 孔冠冲 范书贤 ZHENG Songjin;LI Zai;DUAN Haitao;ZHU Meng;ZHAO Wei;LIU Yubin;KONG Guanchong;FAN Shuxian(China Tobacco Hebei Industrial Co., Ltd., Shijiazhuang 050051, China;Hunan Helitop Technology Co., Ltd., Changsha 410001, China;Hebei Baisha Tobacco Co., Ltd., Shijiazhuang 050001, China)

机构地区:[1]河北中烟工业有限责任公司,石家庄市维明南大街1号050051 [2]湖南合立拓普科技有限公司 [3]河北白沙烟草有限责任公司,石家庄市珠江大道366号050001

出  处:《烟草科技》2018年第4期81-86,共6页Tobacco Science & Technology

摘  要:为解决常规PID控制器在片烟加料过程中控制时间滞后、控制精度低等问题,基于ARX前馈模型与自适应神经元PID建立了一种片烟加料复合控制系统。利用ARX模型对加料流量进行预测,根据预测值与反馈误差计算出加料泵电机频率以控制加料量;利用自适应神经元PID自动修正控制系数,以适应工况环境的变化。以石家庄卷烟厂生产的"钻石(荷花)"牌卷烟叶组配方为对象,对复合控制系统的性能进行测试,结果表明:该方法显著降低了料头超调量且有效改善了整批次加料精度,系统超调量降低11.2百分点,响应时间缩短3 s,加料累积精度提高0.25百分点。该方法为制丝生产过程加料控制系统的改进提供了技术支持。In order to get rid of time lag and promote control precision in strip casing, a compound control system was established based on ARX feedforward model and self-adaptive neuron PID, wherein the flow rate of casing was predicted by the ARX model. On the basis of the predicted flow rate and feedback error, the frequency of casing pump motor was determined and used to control casing volume; the control coefficient was automatically corrected by the self-adaptive neuron PID to adapt to the variation of working conditions. The performance of the system was tested on the tobacco blend of cigarette brand "Diamond (Hehua)" in Shijiazhuang Cigarette Factory. The results showed that this method significantly reduced the over regulation of head tobacco by 11.2 percentage points and effectively promoted the casing precision in a whole batch, the response time of the system reduced by 3 s, and the accumulated casing precision increased by 0.25 percentage points. The proposed method provides technical supports for improving casing control system in tobacco primary processing.

关 键 词:片烟 加料 控制精度 ARX模型 自适应神经元PID 预测控制 

分 类 号:TS432[农业科学—烟草工业]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象