铁路货运量的内部影响因素及其敏感度分析  被引量:14

Internal influence factors of railway freight volume and its sensitivity analysis

在线阅读下载全文

作  者:颜保凡[1] 郭垂江[1] 李夏苗[2] YAN Baofan;GUO Chuijiang;LI Xiamiao(School of Transportation Management, Hunan Vocational College of Railway Technology, Zhuzhou 412000, China;School of Traffic& Transportation, Central South University, Changsha 410075, China)

机构地区:[1]湖南铁路科技职业技术学院运输管理学院,湖南株洲412000 [2]中南大学交通运输工程学院,湖南长沙410075

出  处:《铁道科学与工程学报》2018年第5期1341-1346,共6页Journal of Railway Science and Engineering

基  金:湖南省教育科学"十三五"规划课题资助项目(XKJ17BZY040);湖南省高校科研资助项目(15C0908)

摘  要:针对铁路货运量的主要13项内部影响因素,以2004~2014年间11年的铁路运输指标统计数据为训练样本,采用BP神经网络建立这些因素与货运量的映射关系,再根据该映射以权积法求解货运量对各因素的敏感度系数,从而定量计算出各项因素对铁路货运量的影响程度。研究结果表明:国铁正式营业里程、货车保有量、货运密度和货车机车平均牵引总重这4项因素对货运量的影响要显著大于其他因素,若需在货源充足的情况下提高货运量,则以上4项因素是需要着重优先考虑的因素。Taking 13 internal factors of railway system as main factor for freight volume, railway transportation index statistical data in the year 2002 to 2012 as training sample, then the mapping relationship between these factors and freight volume can be established by BP neural network. Then, the sensitivity coefficient of freight traffic to can be calculated, this coefficient can be used to measure the influence of various factors on railway freight volume. The results show that the 4 factors, freight mileage, freight car ownership, freight density and average traction gross, are more important than other factors. If we need to increase the volume of freight in sufficient supply, the above 4 factors need to be given priority.

关 键 词:铁路货运量 内部影响因素 BP神经网络 敏感度分析 

分 类 号:U229[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象