检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖利全 段书凯[1,2] 王丽丹 Xiao Li-Quan;Duan Shu-Kai;Wang Li-Dan(School of Electronic and Information Engineering, Southwest University, Chongqing 400715, China;Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Chongqing 400715, China)
机构地区:[1]西南大学电子信息工程学院,重庆400715 [2]非线性电路与智能信息处理重庆市重点实验室,重庆400715
出 处:《物理学报》2018年第9期49-58,共10页Acta Physica Sinica
基 金:国家自然科学基金(批准号:61372139;61571372;61672436);中央高校基本科研业务费专项资金(批准号:XDJK2016A001;XDJK2014A009);重庆市基础科学与前沿技术研究(批准号:cstc2017jcyj BX0050)资助的课题~~
摘 要:忆阻器作为一种非线性电子元件,能用作混沌系统中的非线性项,从而提高系统的复杂度.分形与混沌是密切相连的,分别对两者的研究都已成熟,却鲜有将分形过程应用到混沌系统中,以产生丰富的混沌吸引子.为了探索将分形与混沌系统相结合的可能性,本文首先提出了一个新的忆阻混沌系统,并从对称性、耗散性、平衡点稳定性、功率谱、Lyapunov指数和分数维等方面探讨了系统的动力学特性;紧接着,把经典的Julia分形过程应用到该忆阻混沌系统中,产生了新的混沌吸引子,并将几种由Julia分形衍生的变形Julia分形过程应用于文中提出的忆阻混沌系统,获得了丰富的混沌吸引子;最后,讨论了分形过程中的复常数对系统的影响.从仿真结果可以看出,分形过程与混沌系统的结合能产生丰富的多涡卷混沌吸引子.这不仅为产生多涡卷混沌吸引子提供了一种新方法,还弥补了使用功能函数方法造成混沌系统不光滑的不足.A memristor can be used in chaotic system as a nonlinear term, and thus enhancing the complexity of the chaotic system. Fractal theory is a leading and important branch of nonlinear science, and has been widely studied in many fields in the past few decades. The fractal and chaos are bound tightly and their relevant researches are well-established, but few of them focus on the research of the possibility of combining the fractal and the chaotic system. In order to obtain a multi scroll chaotic attractor, the fractal process is novelty introduced into the memristive chaotic system. In this paper~ at first, a new memristive chaotic system is proposed. Then, the dynamic characteristics of the system are discussed from the aspects of symmetry, dissipation, stabilization of equilibrium points, power spectrum, Lyapunov exponent and fractional dimension. A mapping relationship based on classical Julia fractal is established. Through this mapping relationship, a multi-scroll memristive chaotic system based on the Julia fractal is obtained. Moreover, several deformed Julia fractal processes are applied to the memristive chaotic system, and abundant chaotic attractors are obtained. For example, the square term of the Julia fractal expression is multiplied by a coefficient, and according to the difference in coefficient, the resulting chaotic attractors have the same shape but different sizes. The exponent of the square term in the Julia fractal is changed into a variable, and the chaotic attractor of different scroll numbers is obtained according to the difference in power exponent. In addition, a rich multi-scroll chaotic attractor is obtained by using the fractal expression in the form of weighted sum polynomial. Finally, the influence of a complex constant in the fractal process on the system is discussed. The simulation results show that the combination of fractal process and chaotic system can obtain rich chaotic attractors, such as multi-scroll chaotic attractors. In general, compared with the single-scroll chaotic a
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.210