基于Petri网和萤火虫神经网络的柴油机故障诊断  被引量:12

Fault diagnosis of diesel engine based on Petri net and firefly neural network

在线阅读下载全文

作  者:卓宏明 徐鹏[1] 毛攀峰[1] ZHUO Hongming;XU Peng;MAO Panfeng(Ship Engineering Institute, Zhejiang International Maritime College, Zhoushan 316021, Zhejiang,China)

机构地区:[1]浙江国际海运职业技术学院船舶工程学院,浙江舟山316021

出  处:《中国工程机械学报》2018年第2期178-182,共5页Chinese Journal of Construction Machinery

基  金:舟山市科技局科技资助项目(2016C31050)

摘  要:针对BP神经网络在柴油机故障诊断中,提取训练数据的盲目性及网络收敛速度慢、精度低的问题,提出一种基于Petri网与萤火虫神经网络的故障诊断方法.通过Petri网建模归纳出柴油机所有故障模式,提取神经网络的训练数据,利用萤火虫算法来优化BP神经网络的权值和阈值,改善BP神经网络的性能.仿真实验表明,采用Petri网建模并用萤火虫算法优化BP神经网络的方法,有效地提高了神经网络的收敛速度和诊断精度,在柴油机故障诊断中得到了较好的应用.Aiming at the blindness of BP neural network for extracting training data in diesel engine fault diagnosis and the problem of slow convergence and low precision,a fault diagnosis method based on Petri net and firefly neural network is proposed.The training data of all the fault modes of diesel engine are extracted by Petri nets modeling,and the weights and thresholds of BP neural network are optimized by using firefly algorithm to improve the performance of BP neural network.Simulation results show that using Petri net modeling method and algorithm to optimize BP neural network with firefly enhances the convergence speed and the diagnostic accuracy of the neural network has been applied in fault diagnosis of diesel engine.

关 键 词:故障诊断 柴油机 PETRI网 萤火虫算法 BP神经网络 

分 类 号:TK428[动力工程及工程热物理—动力机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象