机构地区:[1]Key Laboratory of Mariculture and Stock Enhancement in North China's Sea of Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China [2]Key Laboratory of Marine Environmental Research of Liaoning Higher Education, Dalian 116023, China [3]Institute of Ocean and Fisheries of Panjin, Panjin 124001, China
出 处:《Journal of Oceanology and Limnology》2018年第2期351-361,共11页海洋湖沼学报(英文)
基 金:Supported by the National Natural Science Foundation of China(No.41171389);the Public Science and Technology Research Funds Projects of Ocean(No.201305043);the Program for Liaoning Excellent Talents in University(No.LR2013035)
摘 要:This study examines the impacts of short-term(6 months) fertilization on the community structure and abundance of ammonia-oxidizing betaproteobacteria(β-AOB) and the potential nitrification rate in sediment colonized by S uaeda heteroptera in a saltmarsh located in Shuangtai estuary, China. The sediment samples were collected from plots treated with different amounts of an N fertilizer(urea supplied at 0.1, 0.2, 0.4, and 0.8 g/kg(nitrogen content in dry sediment)), and with different forms of N fertilizers(urea,(NH4) 2 SO 4, and NH_4NO_3, each supplied at 0.2 g/kg). The fertilizers were applied 1–4 times during the plant-growing season in May, July, August and September of 2013. Untreated plots were included as a control. As revealed in denaturing gradient gel electrophoresis of the 16 S r RNA gene, the β-AOB community responded to both the amount and form of N. Real-time quantitative PCR indicated that both abundance and potential nitrification rate of β-AOB increased after N addition, regardless of concentration and form(except NH_4NO_3). These results provide evidence that short-term N application influences the sediment β-AOB community, β-AOB abundance and potential nitrification rate in a saltmarsh ecosystem.This study examines the impacts of short-term (6 months) fertilization on the community structure and abundance of ammonia-oxidizing betaproteobacteria (β-AOB) and the potential nitrification rate in sediment colonized by Suaeda heteroptera in a saltmarsh located in Shuangtai estuary, China. The sediment samples were collected from plots treated with different amounts of an N fertilizer (urea supplied at 0.1, 0.2, 0.4, and 0.8 g/kg (nitrogen content in dry sediment)), and with different forms of N fertilizers (urea, (NH4)2SO4, and NH4NO3, each supplied at 0.2 g/kg). The fertilizers were applied 1-4 times during the plant-growing season in May, July, August and September of 2013. Untreated plots were included as a control. As revealed in denaturing gradient gel electrophoresis of the 16S rRNA gene, the β-AOB community responded to both the amount and form of N. Real-time quantitative PCR indicated that both abundance and potential nitrification rate of β-AOB increased after N addition, regardless of concentration and form (except NH4NO3). These results provide evidence that short-term N application influences the sediment β-AOB community, β-AOB abundance and potential nitrification rate in a saltmarsh ecosystem.
关 键 词:ammonia-oxidizing betaproteobacteria (β-AOB) denaturing gradient gel electrophoresis (DGGE) nitrification FERTILIZATION SALTMARSH
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...