优化Dijkstra算法在工厂内物流AGV路径规划的研究  被引量:34

AGV Path Planning Based on Optimized Dijkstra Algorithm in Logistics Factory

在线阅读下载全文

作  者:汤红杰 王鼎[1] 皇攀凌[1,2,3] 周军[1,2,3] TANG Hong-jie;WANG Ding;HUANG Pan-ling;ZHOU Jun(School of Mechanical Engineering, Shandong University, Shandong Ji'nan 250061, China;National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Shandong Ji'nan 250061, China;Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Shandong University, Ministry of Education, Shandong Ji'nan 250061, China)

机构地区:[1]山东大学机械工程学院,山东济南250061 [2]山东大学国家机械工程实验教学示范中心,山东济南250061 [3]山东大学高效洁净机械制造教育部重点实验室,山东济南250061

出  处:《机械设计与制造》2018年第A01期117-120,共4页Machinery Design & Manufacture

基  金:山东省重点研发计划项目(2017CXGC0903);山东省重点研发计划项目(2017CXGC0215);山东省自主创新及成果转化专项(2015ZDZX10002);临沂市重点研发计划项目(2016GG004)

摘  要:随着工业4.0等战略的提出,大规模的工厂内物流运输和自动化需求促使了AGV的井喷似增加,并且每年都保持高度的增幅。针对工厂内物流运输AGV的路径规划效率等问题,提出一种将Dijkstra算法存储方式变更为邻接表,并通过二叉堆存储未扩展结点的存储模型,实现了数据结构上对邻接结点搜索的优化,得到了一种优化的Dijkstra算法。将其应用于工厂内物流AGV的路径规划,通过基于电子地图的算法仿真验证,该算法在运行效率、占用内存空间方面均优于普通Dijkstra算法。With the introduction of the strategy of "Industry 4.0", the demand for logistics, transportation and automation in large-scale factories has increased the blowout of AGV and maintained a high growth every year. For plant logistics transportation efficiency of AGV path planning, put forward a way to store the Dijkstra algorithm changes as the adjacency list, and through the binary heap storage the nodes which did not extend, realized the optimization of data structure that nodes are adjacent, got an optimized Dijkstra algorithm.It is applied to plant logistics AGV path planning, based on the electronic map algorithm simulation, the algorithm running efficiency and memory space aspects are better than ordinary Dijkstra algorithm.

关 键 词:自动导引车 最短路径规划 优化Dijkstra算法 路径优化 

分 类 号:TH16[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象