检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘春辉[1] LIU Chun-hui(Department of Mathematics and Statistics, Chifeng University, Chifeng 024001, China)
机构地区:[1]赤峰学院数学与统计学院
出 处:《数学的实践与认识》2018年第9期245-252,共8页Mathematics in Practice and Theory
基 金:内蒙古自治区高等学校科学研究项目(NJSY14238)
摘 要:将模糊集与LI理想概念相结合,在MTL代数中引入反模糊LI理想和反模糊素(布尔/关联/超/固执)LI理想的概念并考察它们的特征性质和相互关系.证明了对MTL代数的非常值反模糊LI理想4而言,下列四条陈述是等价的:1)A既是反模糊布尔LI理想又是反模糊素LI理想;2)A既是反模糊关联LI理想又是反模糊素LI理想;3)A是反模糊超LI理想;4)A是反模糊固执LI理想.Combining fuzzy sets and LI-ideals, the concepts of anti-fuzzy LI-ideals and anti- fuzzy Boolean(implicative/prime/ultra/obstinate) LI-ideals in MTL-algebras are introduced and their properties and relations are investigated. It is proved that the following four states are equivalent for a non-constant anti-fuzzy LI-ideal A in a MTL-algebra: (1) A is both a anti-fuzzy Boolean and a anti-fuzzy prime LI-ideal; (2) A is both a anti-fuzzy implicative and a anti-fuzzy prime LI-ideal; (3) A is a anti-fuzzy ultra LI-ideal; (4) A is a anti-fuzzy obstinate LI-ideal.
关 键 词:模糊逻辑 MTL代数 反模糊(布尔/关联/素/超/固执)LI理想
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222