检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏民[1] SU Min(School of Economics and Management, Taiyuan University of Technology, Taiyuan 030024 ,Chin)
机构地区:[1]太原理工大学经济管理学院,山西太原030024
出 处:《系统工程》2017年第12期15-24,共10页Systems Engineering
基 金:山西省软科学研究一般项目(2017041017-1);太原理工大学校基金资助项目(2016RS13)
摘 要:本文首先对A股市场进行聚类分析,找出比较典型的3个代表性行业,之后进行小波分解,提取出这些行业数据的低频部分(趋势)和高频部分(周期和不规则)。然后,对行业的低频数据建立VAR模型,进行Granger因果关系分析和方差分解,以检验行业间的均值溢出效应。研究结果表明A股市场不同行业之间的均值溢出效应很显著。最后,对行业的高频数据部分,进行DCC-GARCH和BEKK-GARCH建模,分析不同行业间的时变关系和波动溢出效应。研究结果表明A股市场不同行业间的相关性是时变的,行业间的双向波动溢出效应明显,但单向溢出效应中有个别行业并不显著。Using a cluster analysis,this paper firstly finds three representative industries and applies a wavelet analysis to extract the low-frequency part(trends)and high-frequency part(cycle and irregular).Then,this paper establishes a VAR model based on the low-frequency data to do Granger causality analysis and variance decomposition for testing inter-industry mean spillovers.According to the results,the mean spillover effect between different industries in the A-share market and is significant.Finally,based on the high-frequency data,this paper establishes the DCC-GARCH and BEKK-GAECH model for analyzing time-varying relationships and volatility spillovers effect between different industries.The results show that the correlation between different Industries in A-share market is time-varying and a bi-directional volatility spillover effect is obvious.But,unidirectional spillover effect is not significant in some Industries.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.52.105