基于离散粒子群算法的凸多模态高光谱图像端元提取研究  被引量:4

Piecewise Convex Mulutiple-model Hyperspectral Imagery ENDmember-extraction based on Discrete Particle Swarm Optimization

在线阅读下载全文

作  者:刘爱林 郭宝平[1] 李岩山[3] Liu Ailin1,2, Guo Baoping1, Li Yanshan3(1.College of Optoelectronic and Engineering ,Key Laboratory of Optoelectronic Devices and System s fo Ministry of Education , Shenzhen University, Shenzhen 518060, China 2.College of Electronic and InJbrmation , Hunan Tecnology and Engineering University ,Yongzhou 425100,China 3.College fo information and Engineering, Shenzhen University, Shenzhen 518060, China)

机构地区:[1]深圳大学光电工程学院光电子器件与系统教育部重点实验室,广东深圳518006 [2]湖南科技学院电子信息工程学院,湖南永州425100 [3]深圳大学信息工程学院,广东深圳518006

出  处:《遥感技术与应用》2018年第2期227-232,共6页Remote Sensing Technology and Application

基  金:国家重大科学仪器设备开发专项(2014YQ230659);湖南省自然科学基金资助项目(13JJ6079);湖南省永州市科技计划项目(2015a20)资助;湖南科技学院重点学科建设项目资助(电路与系统);国家自然科学基金项目(61771319;61401286);广东省自然科学基金项目(2017A030313343);深圳市科技计划项目(JCYJ20160520173822387;JCYJ20160307143441261);湖南省教育厅资助科研项目(12A054)

摘  要:为了提高以凸几何模型为基础的标准线性解混模型的计算精度,利用离散粒子群算法((Discrete Particle Swarm Optimization,D-PSO)来求解分段凸多模态高光谱图像端元提取。D-PSO为智能随机搜索算法,适合求解非凸函数的全局最优解,减少由凸分段数不确定性引起的解混误差。选取了16个地物作为端元,利用D-PSO方法求得其解混丰度反演结果,实验结果表明:端元位置与地面真值图上的端元位置互相匹配,D-PSO方法能够更有效地检测出高光谱图像中的目标,是一种行之有效的解混方法。Piecewise COnvex Multiple-Model ENDmember(PCOMMEND)spectral unmixing can well solve unmixing of the nonconvex hyperspectral data,which improves the calculation accuracy of the standard linear mixed model based on the convex geometry model.the number of piecewise convex is not sure in the practical application,which limits the calculation ccuracy of unmixing and the wrong endmembers will sometimes extracted,in view of the situation,the Discrete Particle Swarm Optimization(D-PSO)is proposed to unmix the piecewise convex mulutiple-model hyperspectral imagery,D-PSO is the intelligent algorithm of random search,and is able to find the global optimal solution of convex function,which reduce the unmixing error caused by the uncertainty number of the convex section,experiments on the simulative data and real data has indicate D-PSO improves the accuracy of the extracting endmember and estimating the proportion.

关 键 词:高光谱图像 离散粒子群算法 分段凸多模态 解混 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象