检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨朦朦 汪汇兵 欧阳斯达 范奎奎[4] 戚凯丽 Yang Mengmeng1 , Wang Huibing2, Ouyang Sida2, Fan Kuikui3, Qi Kaili1(1.Shandong University of Science and Technology ,Qingdao 266510 ,China ; 2.Satellite Surveying and Mapping Application Center ,Belying 100048,China 3.China University of Mining and Technology ,Xuzhou 221116 ,China)
机构地区:[1]山东科技大学测绘科学与工程学院,山东青岛266510 [2]国家测绘地理信息局卫星测绘应用中心,北京100048 [3]江苏省地理信息资源开发与利用协同创新中心,南京210023 [4]中国矿业大学环境与测绘学院,江苏徐州221116
出 处:《遥感技术与应用》2018年第2期313-320,共8页Remote Sensing Technology and Application
基 金:国家自然科学基金项目(41271394)
摘 要:为有效解决高分辨率多光谱遥感影像分类模糊性和不确定性以及较好地克服噪声的影响,提出了一种基于双树复小波分解的BP神经网络遥感图像分类方法。首先提取影像的NDVI、纹理特征来降低影像中因"同谱异物"和"同物异谱"引起的分类不确定性;然后对影像的原始光谱波段、NDVI、纹理特征图像进行一层双树复小波分解,提取出图像的低频信息,降低图像噪声以及减少分类中存在的"椒盐"现象;最后将提取的低频子图作为BP神经网络的输入并根据训练好的网络进行分类,得到最终的分类结果。对比实验结果表明该方法的分类结果杂点较少,区域一致性更强,具有较高的分类精度和较好的鲁棒性。In order to solve the ambiguity and uncertainty of high resolution multi-spectral remote sensing image classification and to better overcome the influence of noise,a new BPNN(Back Propagation Neural Network)classification method of multi-spectral image,based on DT-CWT decomposition,is presented in this paper.First,the NDVI and texture features of the image are extracted to reduce the classification uncertainty caused by the problem of different objects having the same spectrum and the same objects having different spectrum in the image,then,the original spectral band,NDVI and texture features of the image are decomposed by DT-CWT to extract the Low-frequency information of the image,as well as to reduce the image noise and the presence of"salt and pepper"in the classification.Finally,the extracted low-frequency sub-graphs are input to the BP neural network and classified according to the trained network to obtain the final classification result.The results of the comparison show that the proposed method with less miscellaneous points has stronger regional consistency,higher classification accuracy and better robustness.
关 键 词:归一化植被指数 纹理 灰度共生矩阵 双树复小波变换 BP神经网络
分 类 号:TP75[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249