检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘赐德 管一弘[1] 赵建军[1] LIU Ci-de;GUAN Yi-hong;ZHAO Jian-jun(School of Science, Kunming University of Science and Technology, Kunming 650504,Chin)
出 处:《信息技术》2018年第5期1-4,9,共5页Information Technology
基 金:国家自然科学基金青年科学基金资助项目(11103069);昆明理工大学人才培养基金项目(KKZ3201339035)
摘 要:对于图像分割,在实际运用中尚无通用的算法实现对所有图像分割。针对烟叶图像的分割,传统的基于区域生长、阈值分割等方法分割效果并不理想。为此,文中提出基于颜色空间模型的K-means聚类分割算法。先提取烟叶图像的颜色分量,以RGB颜色分量和HSV分量为聚类样本点进行K-means聚类分割,比较两种算法的结果。结果表明:基于HSV颜色空间模型对烟叶分割效果比较好,适用于对烟叶的图像分割,为准确提取烟叶特征奠定基础。For image segmentation,there is no general algorithm to segment all the images in the practical applications. For the segmentation of tobacco images,the effect of the traditional segmentation methods based on region growing and threshold segmentation are not satisfactory. Therefore,this paper proposes a K-means clustering segmentation algorithm based on color space model. Firstly,the color components of the tobacco image are extracted,the RGB color components and the HSV components are used as the clustering sample points to do the K-means clustering segmentation,and the results of the two algorithms are compared. The results show that the segmentation of tobacco leaves based on HSV color space model is better. It is suitable for image segmentation of tobacco,and lays the foundation for accurate extraction of tobacco characteristics.
关 键 词:烟叶图像分割 K-MEANS聚类算法 颜色模型 HSV
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175