检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张帆[1,2] 张新红[3] ZHANG Fan;ZHANG Xin-Hong(Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475001;School of Computer and Information Engineering, Henan University, Kaifeng 475001;School of Software, Henan University, Kaifeng 475001)
机构地区:[1]河南大学图像处理与模式识别研究所,开封475001 [2]河南大学计算机与信息工程学院,开封475001 [3]河南大学软件学院,开封475001
出 处:《自动化学报》2018年第5期943-952,共10页Acta Automatica Sinica
基 金:国家科技支撑计划项目(2015BAK01B06);河南省自然科学基金(162300410032)资助~~
摘 要:把材料科学中的位错理论引入到水平集方法中.图像中水平集曲线的演化被看作刃位错中位错线的滑移过程,运用位错动力学机制推导出驱使水平集曲线演化的位错组态力.结合距离正则化水平集方法,把水平集方法的边缘检测函数替换为基于位错动力学理论的速度停止函数,并构建了新的距离正则化水平集函数演化方程.水平集曲线在位错组态力和速度停止函数的驱使下移动.位错组态力反映了单位长度曲线上的平均受力情况,不仅包括了图像梯度信息,也包括了位错组态力的作用范围等信息,因此可以有效地避免在局部图像梯度异常的情况下发生曲线停止演进的现象,或者避免在弱边缘处由于图像梯度较小发生局部边界泄漏的现象.实验结果表明,本文算法对弱边缘图像具有较好的分割效果.Dislocation theory of materials science is introduced into the level set method. Curve evolution of the level set method is viewed as a slipping process of edge dislocation, and the evolution of zero level set is driven by the dislocation configuration force which is derived from the dislocation dynamics mechanism. Combined with distance regularized level set method, the edge indicator function is replaced by the speed stopping function, and a new evolution equation of distance regularized level set method is constructed with the dislocation theory. In the proposed algorithm, the dislocation configuration force and the speed stopping function drive the curve evolution of level set. The dislocation configuration force reflects the average force on the unit length curve, not only including the gradient information of image but also including the information of the effective range of the dislocation configuration force. The proposed algorithm can effectively avoid the phenomenon that the level set function stops evolution because of abnormal image gradient, and the phenomenon of boundary leakage because of the smaller image gradient. Experimental results show that the proposed algorithm has good segmentation performance for images with weak boundaries.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222