Research progress of Ge on insulator grown by rapid melting growth  

Research progress of Ge on insulator grown by rapid melting growth

在线阅读下载全文

作  者:Zhi Liu Juanjuan Wen Chuanbo Li Chunlai Xue Buwen Cheng 

机构地区:[1]State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China [2]College of Materials Science and Optoelectronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Journal of Semiconductors》2018年第6期66-75,共10页半导体学报(英文版)

基  金:Project supported in part by the National Key Research and Development Program of China(No.2017YFA0206404);the National Natural Science Foundation of China(Nos.61435013,61534005,61534004,61604146)

摘  要:Ge is an attractive material for Si-based microelectronics and photonics due to its high carries mobility, pseudo direct bandgap structure, and the compatibility with complementary metal oxide semiconductor (CMOS) processes. Based on Ge, Ge on insulator (GOI) not only has these advantages, but also provides strong electronic and optical confinement. Recently, a novel technique to fabricate GOI by rapid melting growth (RMG) has been described. Here, we introduce the RMG technique and review recent efforts and progress in RMG. Firstly, we will introduce process steps of RMG. We will then review the researches which focus on characterizations of the GOI including growth dimension, growth mechanism, growth orientation, concentration distribution, and strain status. Finally, GOI based applications including high performance metal-oxide-semiconductor field effect transistors (MOSFETs) and photodetectors will be discussed. These results show that RMG is a promising technique for growth of high quality GOIs with different characterizations. The GOI grown by RMG is a potential material for the next-generation of integrated circuits and optoelectronic circuits.Ge is an attractive material for Si-based microelectronics and photonics due to its high carries mobility, pseudo direct bandgap structure, and the compatibility with complementary metal oxide semiconductor (CMOS) processes. Based on Ge, Ge on insulator (GOI) not only has these advantages, but also provides strong electronic and optical confinement. Recently, a novel technique to fabricate GOI by rapid melting growth (RMG) has been described. Here, we introduce the RMG technique and review recent efforts and progress in RMG. Firstly, we will introduce process steps of RMG. We will then review the researches which focus on characterizations of the GOI including growth dimension, growth mechanism, growth orientation, concentration distribution, and strain status. Finally, GOI based applications including high performance metal-oxide-semiconductor field effect transistors (MOSFETs) and photodetectors will be discussed. These results show that RMG is a promising technique for growth of high quality GOIs with different characterizations. The GOI grown by RMG is a potential material for the next-generation of integrated circuits and optoelectronic circuits.

关 键 词:rapid melting growth Ge on insulator MOSFET PHOTODETECTORS 

分 类 号:TM216[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象