检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘燕[1] 薛凌波[1] 于晓强[1] 姜萍[1] 沈姣姣[1] 王朔[1] 耿淑平[1] LIU Yan;XUE Ling- bo;YU Xiao- qiang;JIANG Ping;SHEN Jiao-jiao;WANG shuo;GENG Shu-ping(The First People's Hospital of Nantong, Nantong Jiangsu 226001 ,China)
出 处:《中国消毒学杂志》2018年第5期345-348,共4页Chinese Journal of Disinfection
基 金:南通市卫计委青年科研基金项目(WQ2016037)
摘 要:目的研究多重耐药鲍曼不动杆菌(MDR-AB)医院感染发展趋势,为有效防控提供理论依据。方法采用时间序列分析方法,对江苏省某综合医院患者送检标本MDR-AB的检出结果进行分析,建立预测模型和防控措施。结果 MDR-AB月检出率的ARIMA预测模型为▽12xt=μ+0.762 2εt-1+εt;模型预测2016年MDR-AB月检出率的平均相对误差为15.32%,预测值与实际值总体趋势基本一致。结论 MDR-AB检出率存在周期变化和长期增长趋势,适用于ARIMA模型进行预测,可为临床早期采取防控措施提供依据。Objective To study the epidemic trends of multiple drug resistance-Acinetobacter baumannii,and to provide a scientific basis for reducing the MDR-AB infection. Methods Time series analysis was conducted by using the monthly incidence data of MDR-AB patients in a hospital of Jiangsu province,and a predictive model was established after parameter estimation and model evaluation. Results The MDR-AB detection rate for ARIMA model was ▽ 12 xt= μ + 0. 762 2εt-1 +εt,and the average of the relative error between actual and predicted values was 15. 32%. But the trend of model prediction and the actual was basically same. Conclusion The ARIMA model can well fit and predict the detection rate of MDR-AB which has periodic change and long-term growth trend,which can provide a reference for early clinical prevention and control measures.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62