检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张祥 崔哲 董玉玺 田文德[1] Xiang ZHANG;Zhe CUI;Yuxi DONG;Wende TIAN(College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, Chin)
机构地区:[1]青岛科技大学化工学院
出 处:《过程工程学报》2018年第3期590-594,共5页The Chinese Journal of Process Engineering
基 金:国家自然科学基金资助项目(编号:21576143)
摘 要:针对化工过程高维数据的故障特征难以提取的难题,提出变分自动编码器(VAE)结合深度置信网络(DBN)的混合故障诊断方法.在VAE的编码部分对隐变量空间Z添加约束,通过重参数化方法进行反向传播训练,可无监督地学习不同故障对应的隐变量特征,其作为DBN分类模型的输入特征训练网络,输入测试集进行故障诊断.田纳西伊斯曼流程(TE)应用结果表明,VAE能提取原始数据更加抽象有效的特征,VAE-DBN分类准确.To extract the fault feature from a large quantity of high-dimensional data, a variational auto-encoder(VAE) and deep belief network(DBN) combined fault diagnosis method was proposed for chemical process. In the encoding process of VAE, constraints were added to the latent variable space Z, and the backward propagation training was carried out by the re-parameterization method. The latent variables corresponding to different faults could be learned without supervision. Subsequently, the latent variable features learned by VAE were used as input features of the DBN classification model to diagnose the faults. The results showed that VAE could extract more abstract and effective features from the original data, and VAE-DBN had excellent performance in classification accuracy.
关 键 词:变分自动编码器 深度置信网络 故障诊断 特征提取
分 类 号:TQ018[化学工程] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.187