检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗倩 吴时彬[1] 汪利华[1] 杨伟[1] 范斌[1] LUO Qian;WU Shi-bin;WANG Li-hua;YANG Wei;FAN Bin(Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China;University of Chinese Academy of Sciences, Beij ing 100049, China)
机构地区:[1]中国科学院光电技术研究所,成都610209 [2]中国科学院大学,北京100049
出 处:《光子学报》2018年第6期201-208,共8页Acta Photonica Sinica
基 金:国家重点研发计划(No.2016YFB0500200)资助~~
摘 要:提出了基于稀疏子孔径正交多项式的拼接算法.该算法采用Mathematica9.0对圆域Zernike多项式进行Gram-Schimdt正交化,构造出稀疏子孔径区域内的标准正交多项式——Z-sparse多项式,并采用该正交多项式进行稀疏子孔径区域波前数据的拟合.实验表明:根据算法重构与直接检测的全孔径波前残差PV=0.071 9λ,RMS=0.007 4λ.该算法可对所提取的七个子孔径波前像差数据进行有效的拼接.A stitching algorithm based on orthonormal polynomials in a sparse subsperture area was proposed.In this algorithm, Gram-Schimdt orthogonalization of circular Zernike polynomials is performed by using Mathematica9. 0,and the standard orthonormal polynomials,Z-sparse polynomials,which show orthogonality in sparse subaperture area were established. Wavefront data in sparse subaperture area can be fitting with the new orthogonal polynomials. The experimental results show that the wavefront residuals of peak to valley value and root mean square are 0. 071 9λ and 0. 007 4λ respectively compared with direct testing result. Therefore the algorithm can effectively stitch the seven subapertureswavefront data of interferometry.
关 键 词:稀疏子孔径 正交多项式 Mathematica符号计算 拼接检测 波面重构
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222