基于地理加权回归模型的亚热带地区乔木林生物量估算  被引量:9

Biomass Estimation of Arbor Forest in Subtropical Region Based on Geographically Weighted Regression Model

在线阅读下载全文

作  者:王海宾[1] 侯瑞萍[2] 郑冬梅[2] 高秀会 夏朝宗[2] 彭道黎[1] WANG Haibin;HOU Ruiping;ZHENG Dongmei;GAO Xiuhui;XIA Chaozong;PENG Daoli(College of Forestry, Beijing Forestry University, Beijing 100083, China;Academy of Inventory and Planning, State Forestry Administration, Beijing 100714, China;Institute of Telecommunication Satellite, China Academy of Space Technology, Beijing 100094, China)

机构地区:[1]北京林业大学林学院,北京100083 [2]国家林业局调查规划设计院,北京100714 [3]中国空间科学技术研究院通信卫星事业部,北京100094

出  处:《农业机械学报》2018年第6期184-190,共7页Transactions of the Chinese Society for Agricultural Machinery

基  金:国家重点林业工程监测技术示范推广项目([2015]02号);国家林业局948项目(2015-4-32)

摘  要:基于浙江省碳汇样地调查数据,以乔木林生物量(含地上和地下生物量)为因变量,将筛选的与因变量相关性较高的因子作为解释变量,采用地理加权回归和协同克里格方法对乔木林生物量进行估算,对比分析两种估测方法的精度。结果表明:基于地理加权回归方法构建的乔木林生物量估算模型(R2adj=0.820 4,RMSE=23.021 5 t/hm2)精度优于协同克里格方法(R2adj=0.726 3,RMSE=28.054 9 t/hm2),同时使用地理加权回归方法的乔木林生物量预测值的变异系数(Cv=0.618 9)高于协同克里格法(Cv=0.585 4),由此可知地理加权回归方法因考虑了待估变量的局部变异,比协同克里格方法具有更好的拟合结果,预测精度较高。Accurate estimation of arbor forest biomass is of great significance for the study of forest ecological function and carbon storage. Because of the spatial heterogeneity of the survey factors, the geographically weighted regression method can estimate the local regression of variables and show a good application advantage. Based on the survey data of carbon sinks in Zhejiang Province, taking the biomass of arbor forest (including aboveground and belowground biomass) as dependent variable and factors with high correlation with dependent variable as the explanatory variables, the biomass of arbor forest was estimated by using the geographically weighted regression and co-Kriging methods and compared the accuracy of the two estimation methods. The results showed that the accuracy of arbor forest biomass R2 estimation model ( Radj^2 was 0. 820 4, RMSE was 23. 021 5 t/hm^2) constructed by geographically weighted regression method was better than that of co-Kriging method ( Radj^2 was 0. 726 3, RMSE was 28. 054 9 t/hm^2). The coefficient of variation ( Cv was 0. 618 9) of the prediction value of biomass of arbor forest using geographically weighted regression method was higher than that of the co-Kriging method ( Cv was 0. 585 4). Because of considering the local variation of the estimated variables, the geographically weighted regression method had better fitting results than co-Kriging method, and the prediction accuracy was high. This study can provide a reference for estimating the forest biomass and other forest parameters in a wide range of tree stands by using the geographically weighting regression method.

关 键 词:乔木林 生物量 地理加权回归 协同克里格 估算 

分 类 号:S758.5[农业科学—森林经理学] TP79[农业科学—林学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象