机构地区:[1]Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China [2]Functional Laboratory of Ocean dynamics and climate variability, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China [3]University of Chinese Academy of Sciences, Beoing 100049, China [4]School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China [5]Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510006, China
出 处:《Science China Earth Sciences》2018年第6期659-667,共9页中国科学(地球科学英文版)
基 金:supported by the Major Science Research Plan of China for Global Change Research(Grant No.2012CB956001);the Special Program for Marine of the Chinese Academy of Sciences(Grant Nos.XDA11010205&XDA11010304);the National Natural Science Foundation of China(Grant Nos.41421005&41576016);the Key Foundation for International Cooperation(Grant No.41720104008);the“Science Plan of Aoshan”Project of Qingdao National Laboratory for Marine Science and Technology(Grant No.2016ASKJ04);the Special Program of State Oceanic Administration(Grant No.GASI-03-01-01-05);the Project of Joint Funds of Shandong Province(Grant Nos.2014GJJS0101and U1406401)
摘 要:Based on Marx-Planck coupled model simulations and in situ hydrography measurements, the volume transport of ocean currents and associated carbon fluxes across the continental margin from the continental shelf to the deep ocean in the East China Sea during winter are estimated. Because cross-shelf currents in the Yellow and East China seas are much stronger in winter than in other seasons and are subducted into the subsurface Kuroshio, the cross-shelf burial of carbon takes place mainly in winter. The analyses show prominent cross-shelf transports during winter in the Yellow and East China seas, with annual mean offshore transport across a section from Taiwan to Cheju at 3.92 Sv(1 Sv=10~6 m^3 s^(-1)). Net transport across the section was0.82 Sv off the shelf, determined by the difference between Taiwan and Cheju strait transports. Net cross-shelf transports of dissolving inorganic carbon(DIC), dissolved organic carbon(DOC), and particulate organic carbon(POC) in winter were 98, 12,and 0.1 million tons, respectively. Under global greenhouse gas emission reduction(RCP4.5) and continuous increase(RCP8.5)scenarios, this cross-shelf transport has an increasing trend. The transports across the Taiwan-Cheju section in winter are predicted to increase by 0.54 and 0.65 Sv from 2006 to 2099, with rates of increase 15.3% and 19.6%, respectively. Associated with the transport increase, the cross-shelf fluxes of DIC, DOC and POC increase by as much as 15.4–25.2%. Cross-shelf carbon fluxes in the East China Sea during winter are evaluated for the first time under the global warming scenarios, showing the importance of cross-shelf transport in the carbon cycle of the China marginal seas.Based on Marx-Planck coupled model simulations and in situ hydrography measurements, the volume transport of ocean currents and associated carbon fluxes across the continental margin from the continental shelf to the deep ocean in the East China Sea during winter are estimated. Because cross-shelf currents in the Yellow and East China seas are much stronger in winter than in other seasons and are subducted into the subsurface Kuroshio, the cross-shelf burial of carbon takes place mainly in winter. The analyses show prominent cross-shelf transports during winter in the Yellow and East China seas, with annual mean offshore transport across a section from Taiwan to Cheju at 3.92 Sv(1 Sv=10^6 m^3 s^(-1)). Net transport across the section was0.82 Sv off the shelf, determined by the difference between Taiwan and Cheju strait transports. Net cross-shelf transports of dissolving inorganic carbon(DIC), dissolved organic carbon(DOC), and particulate organic carbon(POC) in winter were 98, 12,and 0.1 million tons, respectively. Under global greenhouse gas emission reduction(RCP4.5) and continuous increase(RCP8.5)scenarios, this cross-shelf transport has an increasing trend. The transports across the Taiwan-Cheju section in winter are predicted to increase by 0.54 and 0.65 Sv from 2006 to 2099, with rates of increase 15.3% and 19.6%, respectively. Associated with the transport increase, the cross-shelf fluxes of DIC, DOC and POC increase by as much as 15.4–25.2%. Cross-shelf carbon fluxes in the East China Sea during winter are evaluated for the first time under the global warming scenarios, showing the importance of cross-shelf transport in the carbon cycle of the China marginal seas.
关 键 词:Cross-shelf transport Carbon fluxes Global warming RCP8.5 RCP4.5
分 类 号:X145[环境科学与工程—环境科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...