检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李尚平[1,2] 陈曾雄 周敬辉[1,3] 莫瀚宁 钟家勤[4] 王梦萍[1] 张可 Li Shangping;Chen Zengxiong;Zhou Jinghui;Mo Hanning;ZhonglJiaqin;Wang Mengping;Zhang Ke(School of Mechanical Engineering, Guangxi University, Nanning 530004, China;School of Computer and Imformation Engineering, Guangxi University for Nationalities, Nanning 530006, China;Guilin University of Technology at Nanning, Nanning 530004, China;School of Mechanical and Ship Oceaneering, Qinzhou University, Qinzhou 535099, China)
机构地区:[1]广西大学机械工程学院,南宁530004 [2]广西民族大学计算机与信息工程学院,南宁530006 [3]桂林理工大学南宁分校,南宁530004 [4]钦州学院机械与船舶海洋工程学院,广西钦州535000
出 处:《农机化研究》2018年第10期11-17,共7页Journal of Agricultural Mechanization Research
基 金:国家自然科学基金项目(51465006);广西重点研发计划项目(AB16380199)
摘 要:针对甘蔗收获机砍蔗时甘蔗宿根破损程度易受路面激励及甘蔗收获机工作参数等多种因素影响的问题,提出了一种甘蔗宿根切割质量的预测方法。以台糖22号为研究对象,将路面振幅、路面振动频率、甘蔗收获机前进速度、刀盘转速和刀盘倾角作为BP神经网络预测模型的输入变量,利用PSO算法优化神经网络的权值与阈值,通过对砍蔗试验数据的训练与预测,建立了台糖22甘蔗宿根切割质量的BP神经网络预测模型。对比了基于PSO算法的BP神经网络模型与传统BP神经网络模型预测,结果表明:基于PSO算法的BP神经网络的模型对甘蔗宿根切割质量预测的最大相对误差为3.301%,而BP神经网络模型的最大相对误差为14.6 5 9%。优化后的新模型较传统模型具有学习能力强、预测精度高的优点。研究结果为甘蔗收获机实际工作中不同路况条件下工作参数的智能调控及提高甘蔗宿根切割质量提供了理论依据。The properties of road excitation,sugarcane harvester working parameters greatly affect the process of cutting the sugarcanes,this paper presents a method to predict sugarcane cutting quality.With Tai Tang 22 as the research object,the road surface amplitude,the road vibration frequency,the forward speed of sugarcane harvest,the cutterhead speed,and the cutterhead angle are taken as the input units of the back-propagating(BP) neural network model.Particle Swarm Optimization(PSO) algorithm was used to optimize the weights and bias of BP neural work.Optimized BP neural network was applied to predict the cutting quality of sugarcane ratoon.The PSO BP prediction neural network model of Tai Tang 22 was trained and tested with the experimental data collected from platform experiment.After comparative analysis the prediction results of BP neural network model of PSO algorithm and traditional BP neural network model,The results showed that the predict of cutting quality of Sugarcane Ratoon's maximum relative error of BP neural network model based on PSO algorithm is 3.301%,and the maximum relative error of BP neural network model is 14.659%.Compared with the traditional model,the new model has the advantages of strong learning ability and high prediction accuracy.Therefore,the PSO BP network is an effective method used for intelligent control of sugarcane harvester in practical work under the different conditions of working parameters to improve cutting quality of sugarcane ratoon.
分 类 号:S126[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185