基于同态滤波和K均值聚类算法的草原植被盖度测量  被引量:2

Measuring Grassland Vegetation Cover Based on Homomorphic Filtering and K-means Clustering Algorithm

在线阅读下载全文

作  者:王海超[1] 宗哲英[1] 殷晓飞[1] 张文霞[1] 王晓蓉[1] 张海军[1] 李靖[1] 王春光[1] 刘涛[1] Wang Haichao;Zong Zheying;Yin Xiaofei;Zhang Wenxia;Wang Xiaorong;Zhang Haijun;Li Jing;Wang Chunguang;Liu Tao(College of Mechanical and Electrical Engineering of Inner Mongolia Agricultural University, Hohhot 010018, China)

机构地区:[1]内蒙古农业大学机电工程学院,呼和浩特010018

出  处:《农机化研究》2018年第8期168-173,187,共7页Journal of Agricultural Mechanization Research

基  金:内蒙古自治区高等学校科学研究项目(NJZY070);内蒙古自治区博士研究生科研创新项目(B20151012902Z);内蒙古自治区自然科学基金项目(2017MSO514;2017MSO361)

摘  要:针对草原盖度地表测量法费时、费力、重现性差及自然环境下光照不均草原植被图像分割效果不理想问题,应用动态巴特沃斯同态滤波法对草原植被图像进行光照补偿,采用K均值聚类算法对补偿后图像进行分割,最后根据植被盖度定义,实现草原植被盖度测量。试验结果表明:本算法测量标准差、相对误差、均方根误差RMSE和耗时均值分别为0.5 7 0%、3.9 8 8%、0.1 0 0和2.3 5 s,比方格纸测量法标准差低4.6 8 6%,速度提升9 0倍左右。通过对分割效果定性和定量分析,验证了本文算法的草原植被盖度测量精度、稳定性和速度,可为草原盖度研究提供参考和技术支持。In view of the problems such as time-consuming,laborious and reproducibility of the surface measurement method of grassland coverage,the effect of uneven vegetation image of vegetation in natural environment is not ideal. Applying dynamic butterworth homomorphic filtering method to compensate grassland vegetation images,K-means clustering algorithm is used to segment the compensated image. Finally,the vegetation coverage is measured according to the definition of vegetation coverage. The experimental results show that the standard deviation,relative error,root mean square error RMSE and time consuming mean are 0. 570%,3. 988%,0. 100 and 2. 35 s respectively,the standard grid measurement method standard deviation of 4. 686%,the speed increase of about 90 times. Based on the qualitative and quantitative analysis of the segmentation effect,the accuracy,stability and velocity of grassland vegetation coverage are verified by this algorithm,which can provide reference and technical support for grassland cover research.

关 键 词:草原 植被盖度 同态滤波 K均值聚类 

分 类 号:S181.5[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象