检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨天鹏 徐鲲鹏 陈黎飞 YANG Tianpeng;XU Kunpeng;CHEN Lifei(College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350117, Fujian, China;Digit Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fujian Normal University, Fuzhou 350117, Fujian, China)
机构地区:[1]福建师范大学数学与信息学院,福建福州350117 [2]数字福建环境监测物联网实验室,福建福州350117
出 处:《山东大学学报(工学版)》2018年第3期140-146,共7页Journal of Shandong University(Engineering Science)
基 金:国家自然科学基金资助项目(61175123);福建省自然科学基金资助项目(2015J01238);福建师范大学创新团队资助项目(IRTL1704)
摘 要:针对现有基于划分的聚类算法无法有效聚类簇大小和簇密度有较大差异的非均匀数据的问题,提出一种基于变异系数聚类算法。从聚类优化目标的角度出发,分析了以K-means为代表的划分聚类算法引发"均匀效应"的成因;提出以变异系数度量非均匀数据的分布散度,并基于变异系数定义一种非均匀数据的相异度公式;基于相异度公式定义了聚类目标优化函数,并根据局部优化方法给出聚类算法过程。在合成和真实数据集上的试验结果表明,与K-means、Verify2、ESSC聚类算法相比,本研究提出的非均匀数据的变异系数聚类算法(coefficient of variation clustering for non-uniform data,CVCN)聚类精度提升5%~40%。Affected by the"uniform effect",a problem existed in the partition-based algorithms remained on open and challenging taskdue to handling. To solve this problem,a clustering algorithm based on coefficient of variation was proposed. The"uniform effect"caused by K-means-type partitioning clustering algorithm from the view of clustering optimization was analyzed. Instead of the squared error,a new measure of dispersion for non-uniform data was proposed relied on the coefficient of variation. The clustering objective optimization function was defined using a new non-uniform data dissimilarity formula,which was proposed based on the coefficient of variation. According to the local optimization method,the clustering algorithm process was given. The experimental results on real and synthetic non-uniform datasets showed that the clustering accuracy of CVCN was better than K-means,Verify2,ESSC.
关 键 词:聚类 基于划分聚类 非均匀数据 均匀效应 变异系数 K-MEANS
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62