检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周玉强 陈国栋 盛小明[1] Zhou Yuqiang;Chen Guodong;Sheng Xiaoming(College of Mechanical and Electrical Engineering, Soochow University, Suzhou 215006, China)
出 处:《煤矿机械》2018年第6期151-153,共3页Coal Mine Machinery
基 金:国家自然科学基金项目(U1509202)
摘 要:针对工业领域的生产线零件分拣系统存在识别零件准确率较低的问题,在对原始图片进行背景减除、滤波、裁剪零件区域和尺寸调整的基础上,提出利用卷积神经网络,进行零件的识别分类。研究了卷积神经网络对各种姿态和不同光照条件下的零件识别准确率,同时搭建了一套机器人系统实现零件分拣任务。实验表明,卷积神经网络可以准确地识别各种零件,且对光照和姿态有较强的鲁棒性,对生产线零件分拣系统有一定的应用价值。To solve the problem of low-accuracy in parts identification existing in the production line parts sorting system in the industrial field,putting forward the identification and classification of parts by using Convolution Neural Network(CNN),based on the background subtracting,filtering, clipping parts zone and size adjustment of the original image. Studying the parts recognition accuracy of CNN for various positions and under different illumination conditions,and a robot system is constructed to complete the parts sorting task. The experiment shows that CNN can accurately identify various parts,and has strong robustness for illumination and positions. The results have a certain application value to the production line parts sorting system.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.89