检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张远 徐逸卿[2] Zhang Yuan1, Xu Yiqing2(1.Nanjing Institute of Information Technology, Nanjing 210000, China; 2.Nanjing Forestry University, Nanjing 210037, Chin)
机构地区:[1]南京信息技术研究院,江苏南京210000 [2]南京林业大学,江苏南京210037
出 处:《江苏科技信息》2018年第15期41-44,共4页Jiangsu Science and Technology Information
摘 要:如何分析流量是一个热门问题,近几年许多国内外的研究学者也对该问题有不少的研究与实践。现有的处理方法大多以基于机器学习的流量识别技术为主,在这些机器学习方法中,SVM技术表现出训练时间短、泛化能力高等优势。但其主要不足在于:需要的样本标记数量多,导致需要花费的成本高。因此文章提出一种基于SVM和Co-training的恶意流量检测方法,该方法引入Co-training半监督方法以降低样本标记数量,同时保持分类的准确性。How to analyze traffic is a hot issue. In recent years, many scholars at home and abroad have also studied and practiced this issue. Most of the existing processing methods are based on machine learning flow recognitiontechnology. Among these machine learning methods, SVM technology has the advantages of short training time and highgeneralization ability. However, its main disadvantage is that it requires a large number of sample tags, resulting in highcosts. Therefore, this paper proposes a malicious traffic detection method based on SVM and Co-training. This method introduces a Co-training semi-supervised method to reduce the number of sample tags while maintaining the accuracy of classification.
分 类 号:U285.49[交通运输工程—交通信息工程及控制]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3